Using Neuroimaging and Electroencephalography for Prediction of Treatment Resistance in Psychiatric Disorders

  • Je-Yeon Yun
  • Seung-Hwan LeeEmail author


Earlier identification of psychiatric patients who are prone to treatment resistance could avoid the frustration of a trial-and-error approach and might facilitate the design of more optimized treatment regimens and setting of individualized level of care. Although current candidate biomarkers for psychiatric disorders await further validation, knowledge on candidate genomic and brain-based biomarkers is increasing rapidly. Thus, this chapter illustrates recent study findings regarding clinical application of brain-based biomarkers derived from patients for the prediction of response or resistance to treatment, as well as for improved design of clinical studies, to find more robust brain-based biomarkers of treatment response or resistance. First, for patients diagnosed with psychotic disorders, mood disorders, or anxiety disorders, changing patterns of structural-functional brain characteristics that result from treatment with pharmacotherapy, cognitive behavioral therapy, as well as direct brain stimulation will be reviewed. Second, we will show the brain-based predictors of treatment response at baseline. Third, we will turn from exploration based on groupwise predictive power to the individual-level prediction of treatment response and focus on the recent trends in machine learning-based studies in which brain-based biomarkers are applied as explanatory or predictive features.


Magnetic resonance imaging Electroencephalography Treatment resistance Psychotic disorder Mood disorder Anxiety disorder Biomarker 



This work was supported by a grant from the Korea Science and Engineering Foundation (KOSEF), funded by the Korean government (NRF-2018R1A2A2A05018505), and by the Ministry of Science, ICT and Future Planning (NRF-2015M3C7A1028252).


  1. 1.
    Ganella EP, Bartholomeusz CF, Seguin C, Whittle S, Bousman C, Phassouliotis C, et al. Functional brain networks in treatment-resistant schizophrenia. Schizophr Res. 2017;184:73–81.CrossRefGoogle Scholar
  2. 2.
    Iniesta R, Malki K, Maier W, Rietschel M, Mors O, Hauser J, et al. Combining clinical variables to optimize prediction of antidepressant treatment outcomes. J Psychiatr Res. 2016;78:94–102.CrossRefGoogle Scholar
  3. 3.
    Kautzky A, Baldinger-Melich P, Kranz GS, Vanicek T, Souery D, Montgomery S, et al. A new prediction model for evaluating treatment-resistant depression. J Clin Psychiatry. 2017;78(2):215–22.CrossRefGoogle Scholar
  4. 4.
    Cepeda MS, Reps J, Fife D, Blacketer C, Stang P, Ryan P. Finding treatment-resistant depression in real-world data: how a data-driven approach compares with expert-based heuristics. Depress Anxiety. 2018;35(3):220–8.CrossRefGoogle Scholar
  5. 5.
    da Costa SC, Passos IC, Lowri C, Soares JC, Kapczinski F. Refractory bipolar disorder and neuroprogression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;70:103–10.CrossRefGoogle Scholar
  6. 6.
    Kapczinski NS, Mwangi B, Cassidy RM, Librenza-Garcia D, Bermudez MB, Kauer-Sant’anna M, et al. Neuroprogression and illness trajectories in bipolar disorder. Expert Rev Neurother. 2017;17(3):277–85.CrossRefGoogle Scholar
  7. 7.
    Passos IC, Mwangi B, Vieta E, Berk M, Kapczinski F. Areas of controversy in neuroprogression in bipolar disorder. Acta Psychiatr Scand. 2016;134(2):91–103.CrossRefGoogle Scholar
  8. 8.
    Perlis RH. A clinical risk stratification tool for predicting treatment resistance in major depressive disorder. Biol Psychiatry. 2013;74(1):7–14.CrossRefGoogle Scholar
  9. 9.
    Huhtaniska S, Jaaskelainen E, Hirvonen N, Remes J, Murray GK, Veijola J, et al. Long-term antipsychotic use and brain changes in schizophrenia – a systematic review and meta-analysis. Hum Psychopharmacol. 2017;32(2):e2574.CrossRefGoogle Scholar
  10. 10.
    Egerton A, Bhachu A, Merritt K, McQueen G, Szulc A, McGuire P. Effects of antipsychotic administration on brain glutamate in schizophrenia: a systematic review of longitudinal 1H-MRS studies. Front Psychiatry. 2017;8:66.CrossRefGoogle Scholar
  11. 11.
    Guo W, Liu F, Chen J, Wu R, Li L, Zhang Z, et al. Olanzapine modulation of long- and short-range functional connectivity in the resting brain in a sample of patients with schizophrenia. Eur Neuropsychopharmacol. 2017;27(1):48–58.CrossRefGoogle Scholar
  12. 12.
    Stip E, Cherbal A, Luck D, Zhornitsky S, Bentaleb LA, Lungu O. A neuroimaging study of emotion-cognition interaction in schizophrenia: the effect of ziprasidone treatment. Psychopharmacology. 2017;234(7):1045–58.CrossRefGoogle Scholar
  13. 13.
    Aguilar EJ, Corripio I, Garcia-Marti G, Grasa E, Marti-Bonmati L, Gomez-Anson B, et al. Emotional fMR auditory paradigm demonstrates normalization of limbic hyperactivity after cognitive behavior therapy for auditory hallucinations. Schizophr Res. 2018;193:304–12.CrossRefGoogle Scholar
  14. 14.
    Wise T, Cleare AJ, Herane A, Young AH, Arnone D. Diagnostic and therapeutic utility of neuroimaging in depression: an overview. Neuropsychiatr Dis Treat. 2014;10:1509–22.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Brennan BP, Admon R, Perriello C, LaFlamme EM, Athey AJ, Pizzagalli DA, et al. Acute change in anterior cingulate cortex GABA, but not glutamine/glutamate, mediates antidepressant response to citalopram. Psychiatry Res. 2017;269:9–16.CrossRefGoogle Scholar
  16. 16.
    Kraus C, Klobl M, Tik M, Auer B, Vanicek T, Geissberger N, et al. The pulvinar nucleus and antidepressant treatment: dynamic modeling of antidepressant response and remission with ultra-high field functional MRI. Mol Psychiatry. 2018.Google Scholar
  17. 17.
    Admon R, Kaiser RH, Dillon DG, Beltzer M, Goer F, Olson DP, et al. Dopaminergic enhancement of striatal response to reward in major depression. Am J Psychiatry. 2017;174(4):378–86.CrossRefGoogle Scholar
  18. 18.
    Rubin-Falcone H, Weber J, Kishon R, Ochsner K, Delaparte L, Dore B, et al. Longitudinal effects of cognitive behavioral therapy for depression on the neural correlates of emotion regulation. Psychiatry Res. 2018;271:82–90.CrossRefGoogle Scholar
  19. 19.
    Philip NS, Barredo J, van’t Wout-Frank M, Tyrka AR, Price LH, Carpenter LL. Network mechanisms of clinical response to transcranial magnetic stimulation in posttraumatic stress disorder and major depressive disorder. Biol Psychiatry. 2018;83(3):263–72.CrossRefGoogle Scholar
  20. 20.
    Pantazatos SP, Talati A, Schneier FR, Hirsch J. Reduced anterior temporal and hippocampal functional connectivity during face processing discriminates individuals with social anxiety disorder from healthy controls and panic disorder, and increases following treatment. Neuropsychopharmacology. 2014;39(2):425–34.CrossRefGoogle Scholar
  21. 21.
    Mansson KNT, Salami A, Carlbring P, Boraxbekk CJ, Andersson G, Furmark T. Structural but not functional neuroplasticity one year after effective cognitive behaviour therapy for social anxiety disorder. Behav Brain Res. 2017;318:45–51.CrossRefGoogle Scholar
  22. 22.
    Dunlop K, Woodside B, Olmsted M, Colton P, Giacobbe P, Downar J. Reductions in cortico-striatal hyperconnectivity accompany successful treatment of obsessive-compulsive disorder with dorsomedial prefrontal rTMS. Neuropsychopharmacology. 2016;41(5):1395–403.CrossRefGoogle Scholar
  23. 23.
    Thorsen AL, van den Heuvel OA, Hansen B, Kvale G. Neuroimaging of psychotherapy for obsessive-compulsive disorder: a systematic review. Psychiatry Res. 2015;233(3):306–13.CrossRefGoogle Scholar
  24. 24.
    Hasey GM, Kiang M. A review of recent literature employing electroencephalographic techniques to study the pathophysiology, phenomenology, and treatment response of schizophrenia. Curr Psychiatry Rep. 2013;15(9):388.CrossRefGoogle Scholar
  25. 25.
    Alegre M, Molero P, Valencia M, Mayner G, Ortuno F, Artieda J. Atypical antipsychotics normalize low-gamma evoked oscillations in patients with schizophrenia. Psychiatry Res. 2017;247:214–21.CrossRefGoogle Scholar
  26. 26.
    Zheng L, Liu W, He W, Yu S, Zhong G. Altered effective brain connectivity at early response of antipsychotics in first-episode schizophrenia with auditory hallucinations. Clin Neurophysiol. 2017;128(6):867–74.CrossRefGoogle Scholar
  27. 27.
    Ravan M, Hasey G, Reilly JP, MacCrimmon D, Khodayari-Rostamabad A. A machine learning approach using auditory odd-ball responses to investigate the effect of Clozapine therapy. Clin Neurophysiol. 2015;126(4):721–30.CrossRefGoogle Scholar
  28. 28.
    Baskaran A, Farzan F, Milev R, Brenner CA, Alturi S, Pat McAndrews M, et al. The comparative effectiveness of electroencephalographic indices in predicting response to escitalopram therapy in depression: a pilot study. J Affect Disord. 2018;227:542–9.CrossRefGoogle Scholar
  29. 29.
    Iseger TA, Korgaonkar MS, Kenemans JL, Grieve SM, Baeken C, Fitzgerald PB, et al. EEG connectivity between the subgenual anterior cingulate and prefrontal cortices in response to antidepressant medication. Eur Neuropsychopharmacol. 2017;27(4):301–12.CrossRefGoogle Scholar
  30. 30.
    Kazemi R, Rostami R, Khomami S, Horacek J, Brunovsky M, Novak T, et al. Electrophysiological correlates of bilateral and unilateral repetitive transcranial magnetic stimulation in patients with bipolar depression. Psychiatry Res. 2016;240:364–75.CrossRefGoogle Scholar
  31. 31.
    Sun Y, Farzan F, Mulsant BH, Rajji TK, Fitzgerald PB, Barr MS, et al. Indicators for remission of suicidal ideation following magnetic seizure therapy in patients with treatment-resistant depression. JAMA Psychiat. 2016;73(4):337–45.CrossRefGoogle Scholar
  32. 32.
    Cao J, Liu Q, Li Y, Yang J, Gu R, Liang J, et al. Cognitive behavioural therapy attenuates the enhanced early facial stimuli processing in social anxiety disorders: an ERP investigation. Behav Brain Funct. 2017;13(1):12.CrossRefGoogle Scholar
  33. 33.
    Carrasco M, Hong C, Nienhuis JK, Harbin SM, Fitzgerald KD, Gehring WJ, et al. Increased error-related brain activity in youth with obsessive-compulsive disorder and other anxiety disorders. Neurosci Lett. 2013;541:214–8.CrossRefGoogle Scholar
  34. 34.
    Riesel A, Endrass T, Auerbach LA, Kathmann N. Overactive performance monitoring as an endophenotype for obsessive-compulsive disorder: evidence from a treatment study. Am J Psychiatry. 2015;172(7):665–73.CrossRefGoogle Scholar
  35. 35.
    Altamura AC, Delvecchio G, Paletta S, Di Pace C, Reggiori A, Fiorentini A, et al. Gray matter volumes may predict the clinical response to paliperidone palmitate long-acting in acute psychosis: a pilot longitudinal neuroimaging study. Psychiatry Res. 2017;261:80–4.CrossRefGoogle Scholar
  36. 36.
    McNabb CB, Tait RJ, McIlwain ME, Anderson VM, Suckling J, Kydd RR, et al. Functional network dysconnectivity as a biomarker of treatment resistance in schizophrenia. Schizophr Res. 2017; Scholar
  37. 37.
    Vanes LD, Mouchlianitis E, Collier T, Averbeck BB, Shergill SS. Differential neural reward mechanisms in treatment-responsive and treatment-resistant schizophrenia. Psychol Med. 2018;1–10.Google Scholar
  38. 38.
    Zhu J, Cai H, Yuan Y, Yue Y, Jiang D, Chen C, et al. Variance of the global signal as a pretreatment predictor of antidepressant treatment response in drug-naive major depressive disorder. Brain Imaging Behav. 2018;
  39. 39.
    Hou Z, Gong L, Zhi M, Yin Y, Zhang Y, Xie C, et al. Distinctive pretreatment features of bilateral nucleus accumbens networks predict early response to antidepressants in major depressive disorder. Brain Imaging Behav. 2017; Scholar
  40. 40.
    Gong L, Hou Z, Wang Z, He C, Yin Y, Yuan Y, et al. Disrupted topology of hippocampal connectivity is associated with short-term antidepressant response in major depressive disorder. J Affect Disord. 2018;225:539–44.CrossRefGoogle Scholar
  41. 41.
    Lan MJ, Rubin-Falcone H, Motiwala F, Chen Y, Stewart JW, Hellerstein DJ, et al. White matter tract integrity is associated with antidepressant response to lurasidone in bipolar depression. Bipolar Disord. 2017;19(6):444–9.CrossRefGoogle Scholar
  42. 42.
    Liu J, Xu X, Luo Q, Luo Y, Chen Y, Lui S, et al. Brain grey matter volume alterations associated with antidepressant response in major depressive disorder. Sci Rep. 2017;7(1):10464. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Webb CA, Olson EA, Killgore WDS, Pizzagalli DA, Rauch SL, Rosso IM. Rostral anterior cingulate cortex morphology predicts treatment response to internet-based cognitive behavioral therapy for depression. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3(3):255–62.CrossRefGoogle Scholar
  44. 44.
    Sambataro F, Doerig N, Hanggi J, Wolf RC, Brakowski J, Holtforth MG, et al. Anterior cingulate volume predicts response to psychotherapy and functional connectivity with the inferior parietal cortex in major depressive disorder. Eur Neuropsychopharmacol. 2018;28(1):138–48.CrossRefGoogle Scholar
  45. 45.
    Boes AD, Uitermarkt BD, Albazron FM, Lan MJ, Liston C, Pascual-Leone A, et al. Rostral anterior cingulate cortex is a structural correlate of repetitive TMS treatment response in depression. Brain Stimul. 2018; Scholar
  46. 46.
    Mansson KN, Frick A, Boraxbekk CJ, Marquand AF, Williams SC, Carlbring P, et al. Predicting long-term outcome of Internet-delivered cognitive behavior therapy for social anxiety disorder using fMRI and support vector machine learning. Transl Psychiatry. 2015;5:e530.CrossRefGoogle Scholar
  47. 47.
    Klumpp H, Fitzgerald JM, Kinney KL, Kennedy AE, Shankman SA, Langenecker SA, et al. Predicting cognitive behavioral therapy response in social anxiety disorder with anterior cingulate cortex and amygdala during emotion regulation. NeuroImage Clin. 2017;15:25–34.CrossRefGoogle Scholar
  48. 48.
    Klumpp H, Roberts J, Kennedy AE, Shankman SA, Langenecker SA, Gross JJ, et al. Emotion regulation related neural predictors of cognitive behavioral therapy response in social anxiety disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2017;75:106–12.CrossRefGoogle Scholar
  49. 49.
    White LK, Sequeira S, Britton JC, Brotman MA, Gold AL, Berman E, et al. Complementary features of attention bias modification therapy and cognitive-behavioral therapy in pediatric anxiety disorders. Am J Psychiatry. 2017;174(8):775–84.CrossRefGoogle Scholar
  50. 50.
    Gottlich M, Kramer UM, Kordon A, Hohagen F, Zurowski B. Resting-state connectivity of the amygdala predicts response to cognitive behavioral therapy in obsessive compulsive disorder. Biol Psychol. 2015;111:100–9.CrossRefGoogle Scholar
  51. 51.
    Light GA, Swerdlow NR. Future clinical uses of neurophysiological biomarkers to predict and monitor treatment response for schizophrenia. Ann N Y Acad Sci. 2015;1344(1):105–19.CrossRefGoogle Scholar
  52. 52.
    Wade EC, Iosifescu DV. Using electroencephalography for treatment guidance in major depressive disorder. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016;1(5):411–22.CrossRefGoogle Scholar
  53. 53.
    Arns M, Gordon E, Boutros NN. EEG abnormalities are associated with poorer depressive symptom outcomes with escitalopram and venlafaxine-XR, but not sertraline: results from the multicenter randomized iSPOT-D study. Clin EEG Neurosci. 2017;48(1):33–40.CrossRefGoogle Scholar
  54. 54.
    van Dinteren R, Arns M, Kenemans L, Jongsma ML, Kessels RP, Fitzgerald P, et al. Utility of event-related potentials in predicting antidepressant treatment response: an iSPOT-D report. Eur Neuropsychopharmacol. 2015;25(11):1981–90.CrossRefGoogle Scholar
  55. 55.
    Tenke CE, Kayser J, Pechtel P, Webb CA, Dillon DG, Goer F, et al. Demonstrating test-retest reliability of electrophysiological measures for healthy adults in a multisite study of biomarkers of antidepressant treatment response. Psychophysiology. 2017;54(1):34–50.CrossRefGoogle Scholar
  56. 56.
    Lee BH, Park YM, Lee SH, Shim M. Prediction of long-term treatment response to selective serotonin reuptake inhibitors (SSRIs) using scalp and source loudness dependence of auditory evoked potentials (LDAEP) analysis in patients with major depressive disorder. Int J Mol Sci. 2015;16(3):6251–65.CrossRefGoogle Scholar
  57. 57.
    Mumtaz W, Xia L, Mohd Yasin MA, Azhar Ali SS, Malik AS. A wavelet-based technique to predict treatment outcome for Major Depressive Disorder. PLoS One. 2017;12(2):e0171409.CrossRefGoogle Scholar
  58. 58.
    Jaworska N, Wang H, Smith DM, Blier P, Knott V, Protzner AB. Pre-treatment EEG signal variability is associated with treatment success in depression. NeuroImage Clin. 2018;17:368–77.CrossRefGoogle Scholar
  59. 59.
    Bailey NW, Hoy KE, Rogasch NC, Thomson RH, McQueen S, Elliot D, et al. Responders to rTMS for depression show increased fronto-midline theta and theta connectivity compared to non-responders. Brain Stimul. 2018;11(1):190–203.CrossRefGoogle Scholar
  60. 60.
    Stange JP, MacNamara A, Kennedy AE, Hajcak G, Phan KL, Klumpp H. Brain-behavioral adaptability predicts response to cognitive behavioral therapy for emotional disorders: a person-centered event-related potential study. Neuropsychologia. 2017;
  61. 61.
    Dohrmann AL, Stengler K, Jahn I, Olbrich S. EEG-arousal regulation as predictor of treatment response in patients suffering from obsessive compulsive disorder. Clin Neurophysiol. 2017;128(10):1906–14.CrossRefGoogle Scholar
  62. 62.
    Schnack HG. Improving individual predictions: machine learning approaches for detecting and attacking heterogeneity in schizophrenia (and other psychiatric diseases). Schizophr Res. 2017;
  63. 63.
    Kim YK, Na KS. Application of machine learning classification for structural brain MRI in mood disorders: critical review from a clinical perspective. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;80(Pt B):71–80.CrossRefGoogle Scholar
  64. 64.
    Johnston BA, Steele JD, Tolomeo S, Christmas D, Matthews K. Structural MRI-based predictions in patients with treatment-refractory depression (TRD). PLoS One. 2015;10(7):e0132958.CrossRefGoogle Scholar
  65. 65.
    Koutsouleris N, Wobrock T, Guse B, Langguth B, Landgrebe M, Eichhammer P, et al. Predicting response to repetitive transcranial magnetic stimulation in patients with Schizophrenia using structural magnetic resonance imaging: a multisite machine learning analysis. Schizophr Bull. 2017; Scholar
  66. 66.
    Li P, Jing RX, Zhao RJ, Ding ZB, Shi L, Sun HQ, et al. Electroconvulsive therapy-induced brain functional connectivity predicts therapeutic efficacy in patients with schizophrenia: a multivariate pattern recognition study. NPJ Schizophr. 2017;3(1):21.CrossRefGoogle Scholar
  67. 67.
    Bak N, Ebdrup BH, Oranje B, Fagerlund B, Jensen MH, Düring SW, et al. Two subgroups of antipsychotic-naive, first-episode schizophrenia patients identified with a Gaussian mixture model on cognition and electrophysiology. Transl Psychiatry. 2017;7(4):e1087.CrossRefGoogle Scholar
  68. 68.
    Patel MJ, Andreescu C, Price JC, Edelman KL, Reynolds CF, Aizenstein HJ. Machine learning approaches for integrating clinical and imaging features in LLD classification and response prediction. Int J Geriatr Psychiatry. 2015;30(10):1056–67.CrossRefGoogle Scholar
  69. 69.
    Redlich R, Opel N, Grotegerd D, Dohm K, Zaremba D, Burger C, et al. Prediction of individual response to electroconvulsive therapy via machine learning on structural magnetic resonance imaging data. JAMA Psychiat. 2016;73(6):557–64.CrossRefGoogle Scholar
  70. 70.
    Yun JY, Jang JH, Kim SN, Jung WH, Kwon JS. Neural correlates of response to pharmacotherapy in obsessive-compulsive disorder: individualized cortical morphology-based structural covariance. Prog Neuro-Psychopharmacol Biol Psychiatry. 2015;63:126–33.CrossRefGoogle Scholar
  71. 71.
    Reggente N, Moody TD, Morfini F, Sheen C, Rissman J, O’Neill J, et al. Multivariate resting-state functional connectivity predicts response to cognitive behavioral therapy in obsessive-compulsive disorder. Proc Natl Acad Sci U S A. 2018;115(9):2222–7.CrossRefGoogle Scholar
  72. 72.
    Hahn T, Kircher T, Straube B, Wittchen HU, Konrad C, Strohle A, et al. Predicting treatment response to cognitive behavioral therapy in panic disorder with agoraphobia by integrating local neural information. JAMA Psychiat. 2015;72(1):68–74.CrossRefGoogle Scholar
  73. 73.
    Berk M, Post R, Ratheesh A, Gliddon E, Singh A, Vieta E, et al. Staging in bipolar disorder: from theoretical framework to clinical utility. World Psychiatry. 2017;16(3):236–44.CrossRefGoogle Scholar
  74. 74.
    Dragioti E, Wiklund T, Siamouli M, Moutou K, Fountoulakis KN. Could PANSS be a useful tool in the determining of the stages of schizophrenia? A clinically operational approach. J Psychiatr Res. 2017;86:66–72.CrossRefGoogle Scholar
  75. 75.
    Duffy A, Malhi GS, Grof P. Do the trajectories of bipolar disorder and schizophrenia follow a universal staging model? Can J Psychiatry. 2017;62(2):115–22.CrossRefGoogle Scholar
  76. 76.
    Kupfer DJ, Frank E, Ritchey FC. Staging bipolar disorder: what data and what models are needed? Lancet Psychiatry. 2015;2(6):564–70.CrossRefGoogle Scholar
  77. 77.
    Li T, Wang Q, Zhang J, Rolls ET, Yang W, Palaniyappan L, et al. Brain-wide analysis of functional connectivity in first-episode and chronic stages of schizophrenia. Schizophr Bull. 2017;43(2):436–48.PubMedGoogle Scholar
  78. 78.
    Anderzhanova E, Kirmeier T, Wotjak CT. Animal models in psychiatric research: the RDoC system as a new framework for endophenotype-oriented translational neuroscience. Neurobiol Stress. 2017;7:47–56.CrossRefGoogle Scholar
  79. 79.
    Carcone D, Ruocco AC. Six years of research on the National Institute of Mental Health’s Research Domain Criteria (RDoC) initiative: a systematic review. Front Cell Neurosci. 2017;11:46.CrossRefGoogle Scholar
  80. 80.
    Cohen AS, Le TP, Fedechko TL, Elvevag B. Can RDoC help find order in thought disorder? Schizophr Bull. 2017;43(3):503–8.CrossRefGoogle Scholar
  81. 81.
    Luyten P, Fonagy P. The stress-reward-mentalizing model of depression: an integrative developmental cascade approach to child and adolescent depressive disorder based on the research domain criteria (RDoC) approach. Clin Psychol Rev. 2017; Scholar
  82. 82.
    Nusslock R, Alloy LB. Reward processing and mood-related symptoms: an RDoC and translational neuroscience perspective. J Affect Disord. 2017;216:3–16.CrossRefGoogle Scholar
  83. 83.
    Bzdok D, Meyer-Lindenberg A. Machine learning for precision psychiatry: opportunities and challenges. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3(3):223–30.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Seoul National University HospitalSeoulRepublic of Korea
  2. 2.Yeongeon Student Support CenterSeoul National University College of MedicineSeoulRepublic of Korea
  3. 3.Clinical Emotion and Cognition Research LaboratoryInje UniversityGoyangRepublic of Korea
  4. 4.Department of PsychiatryInje University, Ilsan-Paik HospitalGoyangRepublic of Korea

Personalised recommendations