Discussion and Future Work

  • David Zhang
  • Wangmeng Zuo
  • Peng Wang


Recently, the computational pulse diagnosis has attracted much attention. This book provides with several representative methods of computational pulse diagnosis. The ideas, algorithms, and experimental evaluation are also provided for the better understanding of these methods. In this chapter, we will give a further discussion about the book and present some remarks on the future development of computational pulse diagnosis.


  1. 1.
    S. Walsh, and E. King, Pulse Diagnosis: A Clinical Guide, Sydney Australia: Elsevier, 2008.Google Scholar
  2. 2.
    R. Amber, and B. Brooke, Pulse Diagnosis Detailed Interpretations For Eastern & Western Holistic Treatments, Santa Fe, New Mexico: Aurora Press, 1993.Google Scholar
  3. 3.
    C. T. Lee and L. Y. Wei, “Spectrum analysis of human pulse,” IEEE Trans. Biomed. Eng., vol. BME-30, no. 6, pp. 348–352, Jun. 1983.Google Scholar
  4. 4.
    E. Kaniusas, H. Pfutzner, L. Mehnen, J. Kosel, C. Tellez-Blanco, G. Varoneckas, A. Alonderis, T. Meydan, M. Vazquez, M. Rohn, A. M. Merlo, and B. Marquardt, “Method for continuous nondisturbing monitoring of blood pressure by magnetoelastic skin curvature sensor and ECG,” IEEE Sensors Journal, vol. 6, no. 3, pp. 819–828, Jun, 2006.CrossRefGoogle Scholar
  5. 5.
    K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: A further step toward noncontact pulse oximetry,” Rev. Sci. Instrum., vol. 78, no. 4, pp. 044304–1–044304-6, 2007.CrossRefGoogle Scholar
  6. 6.
    L. Chen, H. Atsumi, M. Yagihashi, F. Mizuno, H. Narita, and H. Fujimoto, “A preliminary research on analysis of pulse diagnosis,” in Proceedings of IEEE International Conference on Complex Medical Engineering, Beijing, China, 2007, pp. 1807–1812.Google Scholar
  7. 7.
    C. C. Tyan, S. H. Liu, J. Y. Chen, J. J. Chen, and W. M. Liang, “A novel noninvasive measurement technique for analyzing the pressure pulse waveform of the radial artery,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 1, pp. 288–297, Jan, 2008.Google Scholar
  8. 8.
    S. Lu, R. Wang, L. Cui, Z. Zhao, Y. Yu, and Z. Shan, “Wireless networked Chinese telemedicine system: method and apparatus for remote pulse information retrieval and diagnosis,” in Proceedings of IEEE International Conference on Pervasive Computing and Communications, Hong Kong, China, 2008, pp. 698–703.Google Scholar
  9. 9.
    H.-T. Wu, C.-H. Lee, and A.-B. Liu, “Assessment of endothelial function using arterial pressure signals,” Journal of Signal Processing Systems, vol. 64, no. 2, pp. 223–232, 2011.CrossRefGoogle Scholar
  10. 10.
    L. Jing, S. Hao, G. Yinjing, and S. Hongyu, “Pulse Signal De-Noising Based on Integer Lifting Scheme Wavelet Transform,” in International Conference on Bioinformatics and Biomedical Engineering, WuHan, China, 2007, pp. 936–939.Google Scholar
  11. 11.
    S. Su, Q. Yan-Yan, and Q. Jun-Fei, “Research on de-noising of pulse signal based on fuzzy threshold in wavelet packet domain,” in International Conference on Wavelet Analysis and Pattern Recognition, Beijing, China, 2007, pp. 103–106.Google Scholar
  12. 12.
    G. Rui, W. Yiqin, Y. Jianjun, L. Fufeng, and Y. Haixia, “Wavelet based De-noising of pulse signal,” in IEEE International Symposium on IT in Medicine and Education, Xiamen, China, 2008, pp. 617–620.Google Scholar
  13. 13.
    C. Fengxiang, H. Wenxue, Z. Tao, J. Jung, and L. Xulong, “Research on Wavelet Denoising for Pulse Signal Based on Improved Wavelet Thresholding,” in International Conference on Pervasive Computing Signal Processing and Applications, Harbin, China, 2010, pp. 564–567.Google Scholar
  14. 14.
    D. Wang and D. Zhang, “Analysis of pulse waveforms preprocessing,” in International Conference on Computerized Healthcare, Hong Kong, 2012, pp. 175–180.Google Scholar
  15. 15.
    H. Wang, X. Wang, J. R. Deller, and J. Fu, “A Shape-Preserving Preprocessing for Human Pulse Signals Based on Adaptive Parameter Determination,” IEEE Transactions on Biomedical Circuits and Systems, vol. 8, pp. 594–604, 2013.CrossRefGoogle Scholar
  16. 16.
    L. Xu, M. Q.-H. Meng, K. Wang, W. Lu, and N. Li, “Pulse images recognition using fuzzy neural network,” Expert Systems with Applications, vol. 36, no. 2, pp. 3805–3811, 2009.CrossRefGoogle Scholar
  17. 17.
    C. Chiu, B. Liau, S. Yeh, and C. Hsu, “Artificial neural networks classification of arterial pulse waveforms in cardiovascular diseases,” in Proceedings of the 4th Kuala Lumpur International Conference on Biomedical Engineering, Springer, 2008.Google Scholar
  18. 18.
    W. Zuo, D. Zhang, and K. Wang, “On kernel difference weighted k-nearest neighbor classification,” Pattern Analysis and Applications, vol. 11, no. 3–4, pp. 247–257, 2008.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zhang D, Zhang L, Zhang D, Zheng Y. Wavelet based analysis of Doppler ultrasonic wrist-pulse signals. In: Proceedings of the ICBBE 2008 conference, vol. 2. 2008. p. 539–43.Google Scholar
  20. 20.
    Burges C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 1998;2:121–67.CrossRefGoogle Scholar
  21. 21.
    L. Wang, K.-Q. Wang, and L.-S. Xu, “Recognizing wrist pulse waveforms with improved dynamic time warping algorithm,” in Proceedings of the International Conference on Machine Learning and Cybernetics, pp. 3644–3649, August 2004.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • David Zhang
    • 1
  • Wangmeng Zuo
    • 2
  • Peng Wang
    • 3
  1. 1.School of Science and EngineeringThe Chinese University of Hong KongShenzhenChina
  2. 2.Harbin Institute of TechnologyHarbinChina
  3. 3.Northeast Agricultural UniversityHarbinChina

Personalised recommendations