Advertisement

Carotenoid Cleavage Dioxygenases of Crocus sativus L.

  • Shoib Ahmad Baba
  • Nasheeman Ashraf
Part of the SpringerBriefs in Plant Science book series (BRIEFSPLANT)

Abstract

Carotenoid cleavage dioxygenases (CCDs) form a multienzyme family, the members of which are involved in the production of a diversity of apocarotenoids. The apocarotenoid module vital physiological and developmental processes in plants. This chapter deals with the different aspects of plant CCDs in general and C. sativus in particular such as structure and reaction mechanisms. Further, this chapter also discusses the role of CCDs in plants and their application in plant biotechnology.

Keywords

Carotenoid cleavage dioxygenase Apocarotenoid Saffron 

References

  1. Aharoni A, Giri AP, Deuerlein S, Griepink F, de Kogel WJ, Verstappen FW, Bouwmeester HJ (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15(12):2866–2884CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ashraf N, Jain D, Vishwakarma RA (2015) Identification, cloning and characterization of an ultrapetala transcription factor CsULT1 from Crocus: a novel regulator of apocarotenoid biosynthesis. BMC Plant Biol 15(1):25CrossRefPubMedPubMedCentralGoogle Scholar
  3. Auldridge ME, Block A, Vogel JT, Dabney‐Smith C, Mila I, Bouzayen M, Klee HJ (2006a) Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J 45(6):982–993CrossRefPubMedGoogle Scholar
  4. Auldridge ME, McCarty DR, Klee HJ (2006b) Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol 9(3):315–321CrossRefPubMedGoogle Scholar
  5. Azuma H, Toyota M, Asakawa Y, Takaso T, Tobe H (2002) Floral scent chemistry of mangrove plants. J Plant Res 115(1):0047–0053CrossRefGoogle Scholar
  6. Baba SA, Malik AH, Wani ZA, Mohiuddin T, Shah Z, Abbas N, Ashraf N (2015a) Phytochemical analysis and antioxidant activity of different tissue types of Crocus sativus and oxidative stress alleviating potential of saffron extract in plants, bacteria, and yeast. S Afr J Bot 31(99):80–87CrossRefGoogle Scholar
  7. Baba SA, Jain D, Abbas N, Ashraf N (2015b) Overexpression of Crocus carotenoid cleavage dioxygenase, CsCCD4b, in Arabidopsis imparts tolerance to dehydration, salt and oxidative stresses by modulating ROS machinery. J plant physiol 189:114–125CrossRefPubMedGoogle Scholar
  8. Baba SA, Mohiuddin T, Basu S, Swarnkar MK, Malik AH, Wani ZA, Abbas N, Singh AK, Ashraf N (2015c) Comprehensive transcriptome analysis of Crocus sativus for discovery and expression of genes involved in apocarotenoid biosynthesis. BMC Genomics 16(1):1CrossRefGoogle Scholar
  9. Bouvier F, Suire C, Mutterer J, Camara B (2003) Oxidative remodeling of chromoplast carotenoids identification of the carotenoid dioxygenase CsCCD and CsZCD genes involved in Crocus secondary metabolite biogenesis. Plant Cell 15(1):47–62CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bouvier F, Isner JC, Dogbo O, Camara B (2005a) Oxidative tailoring of carotenoids: a prospect towards novel functions in plants. Trends Plant Sci 10(4):187–194CrossRefPubMedGoogle Scholar
  11. Bouvier F, Rahier A, Camara B (2005b) Biogenesis, molecular regulation and function of plant isoprenoids. Prog Lipid Res 44(6):357–429CrossRefPubMedGoogle Scholar
  12. Brandi F, Bar E, Mourgues F, Horváth G, Turcsi E, Giuliano G, … Rosati C (2011) Study of‘Redhaven’peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC plant biol 11(1):1CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28(12):1883–1896CrossRefPubMedGoogle Scholar
  14. Courtney-Gutterson N, Napoli C, Lemieux C, Morgan A, Firoozabady E, Robinson KE (1994) Modification of flower color in florist’s chrysanthemum: production of a white flowering variety through molecular genetics. Nat Biotechnol 12(3):268–271CrossRefGoogle Scholar
  15. Dicke M, Loon JJ (2000) Multitrophic effects of herbivore‐induced plant volatiles in an evolutionary context. Entomologia Experimentalis et Applicata 97(3):237–249CrossRefGoogle Scholar
  16. Donaldson JM, McGovern TP, Ladd TL (1990) Floral attractants for Cetoniinae and rutelinae (Coleoptera: Scarabaeidae). J Econ Entomol 83(4):1298–1305CrossRefGoogle Scholar
  17. Dudareva N, Negre F (2005) Practical applications of research into the regulation of plant volatile emission. Curr Opin Plant Biol 8(1):113–118CrossRefPubMedGoogle Scholar
  18. Elomaa P, Honkanen J, Puska R, Seppanen P, Helariutta Y, Mehto M, … Teeri TH (1993) Agrobacterium-mediated transfer of antisense chalcone synthase cDNA to Gerbera hybrida inhibits flower pigmentation. Bio/technology (USA)CrossRefGoogle Scholar
  19. Fester T, Maier W, Strack D (1999) Accumulation of secondary compounds in barley and wheat roots in response to inoculation with an arbuscular mycorrhizal fungus and co-inoculation with rhizosphere bacteria. Mycorrhiza 8(5):241–246CrossRefGoogle Scholar
  20. Flath RA, Cunningham RT, Liquido NJ, McGovern TP (1994) Alpha-ionol as attractant for trapping Bactrocera latifrons (Diptera: Tephritidae). J Econ Entomol 87(6):1470–1476CrossRefGoogle Scholar
  21. Floss DS, Schliemann W, Schmidt J, Strack D, Walter MH (2008) RNA interference-mediated repression of MtCCD1 in mycorrhizal roots of Medicago truncatula causes accumulation of C27 apocarotenoids, shedding light on the functional role of CCD1. Plant Physiol 148(3):1267–1282CrossRefPubMedPubMedCentralGoogle Scholar
  22. Frusciante S, Diretto G, Bruno M, Ferrante P, Pietrella M, Prado-Cabrero A, Rubio-Moraga A, Beyer P, Gomez-Gomez L, Al-Babili S, Giuliano G (2014) Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proc Natl Acad Sci 111(33):12246–12251CrossRefPubMedGoogle Scholar
  23. Gutterson NC (1993) Molecular breeding for color, flavor and fragrance. Sci Hortic 55:141–160CrossRefGoogle Scholar
  24. Gutterson N (1995) Anthocyanin biosynthetic genes and their application to flower color modification through sense suppression. Hortscience 30:964–966Google Scholar
  25. Horiuchi JI, Arimura GI, Ozawa R, Shimoda T, Dicke M, Takabayashi J, Nishioka T (2003) Lima bean leaves exposed to herbivore-induced conspecific plant volatiles attract herbivores in addition to carnivores. Appl Entomol Zool 38(3):365–368CrossRefGoogle Scholar
  26. Huang FC, Horváth G, Molnár P, Turcsi E, Deli J, Schrader J, … Schwab W (2009) Substrate promiscuity of RdCCD1, a carotenoid cleavage oxygenase from Rosa damascena. Phytochemistry 70(4):457–464CrossRefPubMedGoogle Scholar
  27. Ibdah M, Azulay Y, Portnoy V, Wasserman B, Bar E, Meir A, … Tadmor Y (2006) Functional characterization of CmCCD1, a carotenoid cleavage dioxygenase from melon. Phytochemistry 67(15):1579–1589CrossRefPubMedGoogle Scholar
  28. Ilg A, Yu Q, Schaub P, Beyer P, Al-Babili S (2010) Overexpression of the rice carotenoid cleavage dioxygenase 1 gene in Golden Rice endosperm suggests apocarotenoids as substrates in planta. Planta 232(3):691–699CrossRefPubMedGoogle Scholar
  29. Kamoda S, Saburi Y (1993) Cloning, expression, and sequence analysis of a lignostilbene-α, β-dioxygenase gene from Pseudomonas paucimobilis TMY1009. Biosci Biotechnol Biochem 57(6):926–930CrossRefPubMedGoogle Scholar
  30. Kato M, Matsumoto H, Ikoma Y, Okuda H, Yano M (2006) The role of carotenoid cleavage dioxygenases in the regulation of carotenoid profiles during maturation in citrus fruit. J Exp Bot 57(10):2153–2164CrossRefPubMedGoogle Scholar
  31. Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2142–2143CrossRefGoogle Scholar
  32. Khan ZR, Pickett JA, Berg JVD, Wadhams LJ, Woodcock CM (2000) Exploiting chemical ecology and species diversity: stem borer and striga control for maize and sorghum in Africa. Pest Manag Sci 56(11):957–962CrossRefGoogle Scholar
  33. Leuenberger MG, Engeloch‐Jarret C, Woggon WD (2001) The reaction mechanism of the enzyme‐catalyzed central cleavage of β‐carotene to retinal. Angew Chem Int Ed 40(14):2613–2617CrossRefGoogle Scholar
  34. Ma J, Li J, Zhao J, Zhou H, Ren F, Wang L, Han Y (2014) Inactivation of a gene encoding carotenoid cleavage dioxygenase (CCD4) leads to carotenoid-based yellow coloration of fruit flesh and leaf midvein in peach. Plant Mol Biol Report 32(1):246–257CrossRefGoogle Scholar
  35. Mathieu S, Terrier N, Bigey F, Günata Z (2005) A carotenoid cleavage dioxygenase from Vitis vinifera L.: functional characterization and expression during grape berry development in relation to C13-norisoprenoid accumulation. J Exp Bot 56(420):2721–2731CrossRefPubMedGoogle Scholar
  36. McQuate GT, Peck SL (2001) Enhancement of attraction of alpha-ionol to male Bactrocera latifrons (Diptera: Tephritidae) by addition of a synergist, cade oil. J Econ Entomol 94(1):39–46CrossRefPubMedGoogle Scholar
  37. Moiseyev G, Takahashi Y, Chen Y, Gentleman S, Redmond TM, Crouch RK, Ma JX (2006) RPE65 is an iron (II)-dependent isomerohydrolase in the retinoid visual cycle. J Biol Chem 281(5):2835–2840CrossRefPubMedGoogle Scholar
  38. Oberhauser V, Voolstra O, Bangert A, von Lintig J, Vogt K (2008) NinaB combines carotenoid oxygenase and retinoid isomerase activity in a single polypeptide. Proc Natl Acad Sci 105(48):19000–19005CrossRefPubMedGoogle Scholar
  39. Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K (2006) Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol 142(3):1193–1201CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pan Z, Zeng Y, An J, Ye J, Xu Q, Deng X (2012) An integrative analysis of transcriptome and proteome provides new insights into carotenoid biosynthesis and regulation in sweet orange fruits. J Proteome 75(9):2670–2684CrossRefGoogle Scholar
  41. Pasare SA, Ducreux LJ, Morris WL, Campbell R, Sharma SK, Roumeliotis E, … Qin X, Zeevaart JA (1999) The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci 96(26):15354–15361Google Scholar
  42. Rubio A, Rambla JL, Santaella M, Gómez MD, Orzaez D, Granell A, Gómez-Gómez L (2008) Cytosolic and plastoglobule-targeted carotenoid dioxygenases from Crocus sativus are both involved in β-ionone release. J Biol Chem 283(36):24816–24825CrossRefPubMedPubMedCentralGoogle Scholar
  43. Salt SD, Tuzun S, Kuć J (1986) Effects of β-ionone and abscisic acid on the growth of tobacco and resistance to blue mold. Mimicry of effects of stem infection by Peronosporatabacina Adam. Physiol Mol Plant Pathol 28(2):287–297CrossRefGoogle Scholar
  44. Schmidt H, Kurtzer R, Eisenreich W, Schwab W (2006) The carotenase AtCCD1 from Arabidopsis thaliana is a dioxygenase. J Biol Chem 281(15):9845–9851CrossRefPubMedGoogle Scholar
  45. Schwartz SH, Tan BC, Gage DA, Zeevaart JA, McCarty DR (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276(5320):1872–1874CrossRefPubMedGoogle Scholar
  46. Simkin AJ, Schwartz SH, Auldridge M, Taylor MG, Klee HJ (2004) The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β‐ionone, pseudoionone, and geranylacetone. Plant J 40(6):882–892CrossRefPubMedGoogle Scholar
  47. Simkin AJ, Moreau H, Kuntz M, Pagny G, Lin C, Tanksley S, McCarthy J (2008) An investigation of carotenoid biosynthesis in Coffeacanephora and Coffeaarabica. J Plant Physiol 165(10):1087–1106CrossRefPubMedGoogle Scholar
  48. Tan BC, Schwartz SH, Zeevaart JA, McCarty DR (1997) Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci 94(22):12235–12240CrossRefPubMedGoogle Scholar
  49. Tan BC, Joseph LM, Deng WT, Liu L, Li QB, Cline K, McCarty DR (2003) Molecular characterization of the Arabidopsis 9‐cis epoxycarotenoid dioxygenase gene family. Plant J 35(1):44–56CrossRefPubMedGoogle Scholar
  50. Thompson AJ, Jackson AC, Symonds RC, Mulholland BJ, Dadswell AR, Blake PS, … Taylor IB (2000) Ectopic expression of a tomato 9‐cis‐epoxycarotenoid dioxygenase gene causes over‐production of abscisic acid. Plant J 23(3):363–374CrossRefPubMedGoogle Scholar
  51. Van Der Krol AR, Mur LA, de Lange P, Mol JN, Stuitje AR (1990) Inhibition of flower pigmentation by antisense CHS genes: promoter and minimal sequence requirements for the antisense effect. Plant Mol Biol 14(4):457–466CrossRefPubMedGoogle Scholar
  52. Vancanneyt G, Sanz C, Farmaki T, Paneque M, Ortego F, Castañera P, Sánchez-Serrano JJ (2001) Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proc Natl Acad Sci 98(14):8139–8144CrossRefPubMedGoogle Scholar
  53. Vogel JT, Walter MH, Giavalisco P, Lytovchenko A, Kohlen W, Charnikhova T, … Fernie AR (2010) SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza‐induced apocarotenoid formation in tomato. Plant J 61(2):300–311CrossRefPubMedGoogle Scholar
  54. Walsh K, Jones GJ, Dunstan RH (1998) Effect of high irradiance and iron on volatile odour compounds in the cyanobacterium Microcystis aeruginosa. Phytochemistry 49(5):1227–1239CrossRefPubMedGoogle Scholar
  55. Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep 28:663–692CrossRefPubMedGoogle Scholar
  56. Walter MH, Fester T, Strack D (2000) Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the ‘yellow pigment’and other apocarotenoids. Plant J 21(6):571–578CrossRefPubMedGoogle Scholar
  57. Westerkamp C, Gottsberger G (2000) Diversity pays in crop pollination. Crop Sci 40:1209–1222CrossRefGoogle Scholar
  58. Young PR, Lashbrooke JG, Alexandersson E, Jacobson D, Moser C, Velasco R, Vivier MA (2012) The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L. BMC Genomics 13(1):1CrossRefGoogle Scholar
  59. Zeevaart JA, Heath TG, Gage DA (1989) Evidence for a universal pathway of abscisic acid biosynthesis in higher plants from 18O incorporation patterns. Plant Physiol 91(4):1594–1601CrossRefPubMedPubMedCentralGoogle Scholar
  60. Zhang M, Leng P, Zhang G, Li X (2009) Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. J Plant Physiol 166(12):1241–1252CrossRefPubMedGoogle Scholar
  61. Zuker A, Tzfira T, Scovel G, Ovadis M, Shklarman E, Itzhaki H, Vainstein A (2001) RolC-transgenic carnation with improved horticultural traits: quantitative and qualitative analyses of greenhouse-grown plants. J Am Soc Hortic Sci 126(1):13–18Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Shoib Ahmad Baba
    • 1
  • Nasheeman Ashraf
    • 1
  1. 1.Department of Plant biotechnologyIndian Institute of Integrative MedicineSrinagarIndia

Personalised recommendations