Advertisement

Subcortical Vascular Cognitive Impairment

  • Yeo Jin Kim
Chapter
  • 25 Downloads
Part of the Stroke Revisited book series (STROREV)

Abstract

Subcortical vascular dementia (SVaD) is a type of vascular dementia caused by white matter ischemia and multiple lacunar infarctions in the subcortical area. Unlike other types of vascular dementia, which progress to sudden deterioration, the progression of SVaD is gradual. Therefore, it is often difficult to distinguish SVaD from Alzheimer’s disease in terms of clinical course. SVaD occurs when small vessels develop stenosis or occlusion due to arteriolosclerosis, where hypoperfusion and autoregulatory dysfunction of the microcirculation are important. Selective loss of brain cells is seen as white matter hyperintensities, and necrosis in small areas that represent lacunar infarction. When the burden of small vessel disease is increased, prefrontal-subcortical and thalamocortical circuits are interrupted, and this induces cognitive impairment. Patients with SVaD show cognitive function deterioration, which is predominantly due to frontal dysfunction, but also show noncognitive symptoms such as gait disturbances, mood and behavior disorders, loss of sphincter control, and pseudobulbar palsy. To diagnose SVaD, clinical symptoms and brain imaging findings are used. For treatment, clinicians work to reduce the vascular risk factors and prescribe agents for Alzheimer’s disease and antiplatelet agents as well. Recent developments in positron emission tomography (PET) have enabled amyloid measurement in vivo, making it possible to identify amyloid deposits in patients with SVaD. SVaD patients with amyloid deposition show more rapid disease progression.

References

  1. 1.
    Roman GC, Erkinjuntti T, Wallin A, et al. Subcortical ischaemic vascular dementia. Lancet Neurol. 2002;1:426–36.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Babikian V, Ropper AH. Binswanger’s disease: a review. Stroke. 1987;18:2–12.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Chui H. Dementia due to subcortical ischemic vascular disease. Clin Cornerstone. 2001;3:40–51.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Hilal S, Mok V, Youn YC, et al. Prevalence, risk factors and consequences of cerebral small vessel diseases: data from three Asian countries. J Neurol Neurosurg Psychiatry. 2017;88:669–74.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2010;341:c3666.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Ylikoski A, Erkinjuntti T, Raininko R, et al. White matter hyperintensities on MRI in the neurologically nondiseased elderly: analysis of cohorts of consecutive subjects aged 55 to 85 years living at home. Stroke. 1995;26:1171–7.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Poels MM, Vernooij MW, Ikram MA, et al. Prevalence and risk factors of cerebral microbleeds: an update of the Rotterdam scan study. Stroke. 2010;41:S103–6.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    de Groot JC, de Leeuw FE, Oudkerk M, et al. Cerebral white matter lesions and subjective cognitive dysfunction: the Rotterdam Scan Study. Neurology. 2001;56:1539–45.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Guo X, Skoog I, Matousek M, et al. A population-based study on motor performance and white matter lesions in older women. J Am Geriatr Soc. 2000;48:967–70.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Lee JH, Kim SH, Kim GH, et al. Identification of pure subcortical vascular dementia using 11C-Pittsburgh compound B. Neurology. 2011;77:18–25.PubMedCrossRefGoogle Scholar
  11. 11.
    Kalaria RN, Erkinjuntti T. Small vessel disease and subcortical vascular dementia. J Clin Neurol. 2006;2:1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Schneider R, Ringelstein EB, Zeumer H, et al. The role of plasma hyperviscosity in subcortical arteriosclerotic encephalopathy (Binswanger’s disease). J Neurol. 1987;234:67–73.PubMedCrossRefGoogle Scholar
  13. 13.
    Strandgaard S, Paulson OB. Regulation of cerebral blood flow in health and disease. J Cardiovasc Pharmacol. 1992;19(Suppl 6):S89–93.PubMedCrossRefGoogle Scholar
  14. 14.
    Baron JC. Perfusion thresholds in human cerebral ischemia: historical perspective and therapeutic implications. Cerebrovasc Dis. 2001;11(Suppl 1):2–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Pantoni L, Garcia JH, Gutierrez JA, et al. Cerebral white matter is highly vulnerable to ischemia. Stroke. 1996;27:1641–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Garcia JH, Lassen NA, Weiller C, et al. Ischemic stroke and incomplete infarction. Stroke. 1996;27:761–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Pantoni L, Inzitari D, Pracucci G, et al. Cerebrospinal fluid proteins in patients with leucoaraiosis: possible abnormalities in blood-brain barrier function. J Neurol Sci. 1993;115:125–31.PubMedCrossRefGoogle Scholar
  18. 18.
    Rosenberg GA. Inflammation and white matter damage in vascular cognitive impairment. Stroke. 2009;40:S20–3.PubMedCrossRefGoogle Scholar
  19. 19.
    Koga H, Takashima Y, Murakawa R, et al. Cognitive consequences of multiple lacunes and leukoaraiosis as vascular cognitive impairment in community-dwelling elderly individuals. J Stroke Cerebrovasc Dis. 2009;18:32–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Benisty S, Gouw AA, Porcher R, et al. Location of lacunar infarcts correlates with cognition in a sample of non-disabled subjects with age-related white-matter changes: the LADIS study. J Neurol Neurosurg Psychiatry. 2009;80:478–83.PubMedCrossRefGoogle Scholar
  21. 21.
    Pantoni L. Leukoaraiosis: from an ancient term to an actual marker of poor prognosis. Stroke. 2008;39:1401–3.PubMedCrossRefGoogle Scholar
  22. 22.
    Pantoni L, Garcia JH. The significance of cerebral white matter abnormalities 100 years after Binswanger’s report: a review. Stroke. 1995;26:1293–301.PubMedCrossRefGoogle Scholar
  23. 23.
    Pantoni L, Poggesi A, Inzitari D. The relation between white-matter lesions and cognition. Curr Opin Neurol. 2007;20:390–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Frisoni GB, Galluzzi S, Pantoni L, et al. The effect of white matter lesions on cognition in the elderly—small but detectable. Nat Clin Pract Neurol. 2007;3:620–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Ferro JM, Madureira S. Age-related white matter changes and cognitive impairment. J Neurol Sci. 2002;203-204:221–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Kovari E, Gold G, Herrmann FR, et al. Cortical microinfarcts and demyelination significantly affect cognition in brain aging. Stroke. 2004;35:410–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Looi JCL, Sachdev PS. Differentiation of vascular dementia from AD on neuropsychological tests. Neurology. 1999;53:670.PubMedCrossRefGoogle Scholar
  28. 28.
    Desmond DW. The neuropsychology of vascular cognitive impairment: is there a specific cognitive deficit? J Neurol Sci. 2004;226:3–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9:689–701.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Erkinjuntti T, Inzitari D, Pantoni L, et al. Research criteria for subcortical vascular dementia in clinical trials. J Neural Transm Suppl. 2000;59:23–30.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Dufouil C, de Kersaint-Gilly A, Besancon V, et al. Longitudinal study of blood pressure and white matter hyperintensities: the EVA MRI Cohort. Neurology. 2001;56:921–6.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Dufouil C, Chalmers J, Coskun O, et al. Effects of blood pressure lowering on cerebral white matter hyperintensities in patients with stroke: the PROGRESS (Perindopril Protection Against Recurrent Stroke Study) Magnetic Resonance Imaging Substudy. Circulation. 2005;112:1644–50.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Weber R, Weimar C, Blatchford J, et al. Telmisartan on top of antihypertensive treatment does not prevent progression of cerebral white matter lesions in the prevention regimen for effectively avoiding second strokes (PRoFESS) MRI substudy. Stroke. 2012;43:2336–42.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Group SPSS, Benavente OR, Coffey CS, et al. Blood-pressure targets in patients with recent lacunar stroke: the SPS3 randomised trial. Lancet. 2013;382:507–15.CrossRefGoogle Scholar
  35. 35.
    Hatazawa J, Shimosegawa E, Satoh T, et al. Subcortical hypoperfusion associated with asymptomatic white matter lesions on magnetic resonance imaging. Stroke. 1997;28:1944–7.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Pantoni L, Rossi R, Inzitari D, et al. Efficacy and safety of nimodipine in subcortical vascular dementia: a subgroup analysis of the Scandinavian Multi-Infarct Dementia Trial. J Neurol Sci. 2000;175:124–34.PubMedCrossRefGoogle Scholar
  37. 37.
    Pantoni L, del Ser T, Soglian AG, et al. Efficacy and safety of nimodipine in subcortical vascular dementia: a randomized placebo-controlled trial. Stroke. 2005;36:619–24.PubMedCrossRefGoogle Scholar
  38. 38.
    Tiehuis AM, van der Graaf Y, Visseren FL, et al. Diabetes increases atrophy and vascular lesions on brain MRI in patients with symptomatic arterial disease. Stroke. 2008;39:1600–3.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Whitmer RA, Karter AJ, Yaffe K, et al. Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus. JAMA. 2009;301:1565–72.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    ten Dam VH, van den Heuvel DM, van Buchem MA, et al. Effect of pravastatin on cerebral infarcts and white matter lesions. Neurology. 2005;64:1807–9.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Gorelick PB, Scuteri A, Black SE, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42:2672–713.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Gottfries CG, Blennow K, Karlsson I, et al. The neurochemistry of vascular dementia. Dementia. 1994;5:163–7.PubMedGoogle Scholar
  43. 43.
    Vinters HV, Ellis WG, Zarow C, et al. Neuropathologic substrates of ischemic vascular dementia. J Neuropathol Exp Neurol. 2000;59:931–45.PubMedCrossRefGoogle Scholar
  44. 44.
    Black S, Roman GC, Geldmacher DS, et al. Efficacy and tolerability of donepezil in vascular dementia: positive results of a 24-week, multicenter, international, randomized, placebo-controlled clinical trial. Stroke. 2003;34:2323–30.PubMedCrossRefGoogle Scholar
  45. 45.
    Wilkinson D, Doody R, Helme R, et al. Donepezil in vascular dementia: a randomized, placebo-controlled study. Neurology. 2003;61:479–86.PubMedCrossRefGoogle Scholar
  46. 46.
    Erkinjuntti T, Kurz A, Gauthier S, et al. Efficacy of galantamine in probable vascular dementia and Alzheimer’s disease combined with cerebrovascular disease: a randomised trial. Lancet. 2002;359:1283–90.PubMedCrossRefGoogle Scholar
  47. 47.
    Moretti R, Torre P, Antonello RM, et al. Rivastigmine in subcortical vascular dementia: an open 22-month study. J Neurol Sci. 2002;203–204:141–6.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Kavirajan H, Schneider LS. Efficacy and adverse effects of cholinesterase inhibitors and memantine in vascular dementia: a meta-analysis of randomised controlled trials. Lancet Neurol. 2007;6:782–92.PubMedCrossRefGoogle Scholar
  49. 49.
    Orgogozo JM, Rigaud AS, Stoffler A, et al. Efficacy and safety of memantine in patients with mild to moderate vascular dementia: a randomized, placebo-controlled trial (MMM 300). Stroke. 2002;33:1834–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Launer LJ, Hughes TM, White LR. Microinfarcts, brain atrophy, and cognitive function: the Honolulu Asia Aging Study Autopsy Study. Ann Neurol. 2011;70:774–80.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Schneider JA, Bennett DA. Where vascular meets neurodegenerative disease. Stroke. 2010;41:S144–6.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Kwok CS, Shoamanesh A, Copley HC, et al. Efficacy of antiplatelet therapy in secondary prevention following lacunar stroke: pooled analysis of randomized trials. Stroke. 2015;46:1014–23.PubMedCrossRefGoogle Scholar
  53. 53.
    Pearce LA, McClure LA, Anderson DC, et al. Effects of long-term blood pressure lowering and dual antiplatelet treatment on cognitive function in patients with recent lacunar stroke: a secondary analysis from the SPS3 randomised trial. Lancet Neurol. 2014;13:1177–85.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Grueter BE, Schulz UG. Age-related cerebral white matter disease (leukoaraiosis): a review. Postgrad Med J. 2012;88:79–87.PubMedCrossRefGoogle Scholar
  55. 55.
    Shi Y, Wardlaw JM. Update on cerebral small vessel disease: a dynamic whole-brain disease. Stroke Vasc Neurol. 2016;1:83–92.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ye BS, Seo SW, Kim JH, et al. Effects of amyloid and vascular markers on cognitive decline in subcortical vascular dementia. Neurology. 2015;85:1687–93.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2020

Authors and Affiliations

  • Yeo Jin Kim
    • 1
  1. 1.Department of NeurologyChuncheon Sacred Heart Hospital, Hallym University College of MedicineChuncheon-siSouth Korea

Personalised recommendations