Neuroimaging Characteristics of Subcortical Vascular Cognitive Impairment

  • Geon Ha KimEmail author
  • Jihye Hwang
  • Jee Hyang Jeong
Part of the Stroke Revisited book series (STROREV)


Subcortical vascular cognitive impairment (SVCI) refers to the cognitive impairment associated with small vessel diseases (SVD), which encompasses both subcortical vascular mild cognitive impairment (svMCI) and subcortical ischemic vascular dementia (SVaD). The recent development of modern MRI techniques such as diffusion tensor imaging (DTI) or resting-state functional MRI (rs-fMRI) has allowed researchers to investigate neuroimaging characteristics related to the mechanisms that underlie cognitive dysfunctions in SVCI. Although ischemia is regarded as the primary underlying pathology of SVCI, one of the major concerns regarding diagnosis and research for SVCI is that the large proportion of clinically diagnosed SVCI patients often reveals concomitant Alzheimer’s disease pathology. With the recent availability of amyloid positron emission tomography (PET), the identification of pure SVCI has provided further insights into neuroimaging characteristics of pure SVCI. Here, this section will introduce an overview of the structural and functional neuroimaging characteristics of SVCI based on recent neuroimaging studies with MRI, especially focused on pure SVCI.


  1. 1.
    Román GC, Erkinjuntti T, Wallin A, et al. Subcortical ischaemic vascular dementia. Lancet Neurol. 2002;1(7):426–36.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Hong YJ, Kim CM, Kim JE, et al. Regional amyloid burden and lacune in pure subcortical vascular cognitive impairment. Neurobiol Aging. 2017;55:20–6.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Kim SH, Park JS, Ahn HJ, et al. Voxel-based analysis of diffusion tensor imaging in patients with subcortical vascular cognitive impairment: correlates with cognitive and motor deficits. J Neuroimaging. 2011;21(4):317–24.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Jellinger KA, Attems J. Neuropathological evaluation of mixed dementia. J Neurol Sci. 2007;257(1):80–7.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55(3):306–19.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Lee JH, Kim SH, Kim GH, et al. Identification of pure subcortical vascular dementia using 11C-Pittsburgh compound B. Neurology. 2011;77(1):18–25.CrossRefGoogle Scholar
  7. 7.
    Erkinjuntti T, Inzitari D, Pantoni L, et al. Limitations of clinical criteria for the diagnosis of vascular dementia in clinical trials. Is a focus on subcortical vascular dementia a solution? Ann N Y Acad Sci. 2000;903:262–72.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Jeong JH, Kim EJ, Seo SW, et al. Cognitive and behavioral abnormalities of vascular cognitive impairment. In: Miller BL, Boeve BF, editors. The behavioral neurology of dementia. Cambridge: Cambridge University Press; 2016. p. 301–30.Google Scholar
  9. 9.
    Kim GH, Lee JH, Seo SW, et al. Seoul criteria for PiB(−) subcortical vascular dementia based on clinical and MRI variables. Neurology. 2014;82(17):1529–35.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed., text revision ed. American Psychiatric Association: Washington, DC; 1994.Google Scholar
  11. 11.
    Dichgans M, Leys D. Vascular cognitive impairment. Circ Res. 2017;120(3):573–91.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12(8):822–38.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Aung WY, Mar S, Benzinger TL. Diffusion tensor MRI as a biomarker in axonal and myelin damage. Imaging Med. 2013;5(5):427–40.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Zarei M, Damoiseaux JS, Morgese C, et al. Regional white matter integrity differentiates between vascular dementia and Alzheimer disease. Stroke. 2009;40(3):773–9.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Zhou Y, Qun X, Qin LD, et al. A primary study of diffusion tensor imaging-based histogram analysis in vascular cognitive impairment with no dementia. Clin Neurol Neurosurg. 2011;113(2):92–7.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Zhou Y, Lin FC, Zhu J, et al. Whole brain diffusion tensor imaging histogram analysis in vascular cognitive impairment. J Neurol Sci. 2008;268(1–2):60–4.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Smith SM, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage. 2006;31(4):1487–505.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kim Y, Kwon H, Lee JM, et al. White matter microstructural changes in pure Alzheimer’s disease and subcortical vascular dementia. Eur J Neurol. 2015;22(4):709–16.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Jung NY, Han CE, Kim HJ, et al. Tract-specific correlates of neuropsychological deficits in patients with subcortical vascular cognitive impairment. J Alzheimer Dis. 2016;50(4):1125–35.CrossRefGoogle Scholar
  20. 20.
    Moody DM, Bell MA, Challa VR. Features of the cerebral vascular pattern that predict vulnerability to perfusion or oxygenation deficiency: an anatomic study. AJNR Am J Neuroradiol. 1990;11(3):431–9.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Gootjes L, Teipel SJ, Zebuhr Y, et al. Regional distribution of white matter hyperintensities in vascular dementia, Alzheimer’s disease and healthy aging. Dement Geriatr Cogn Disord. 2004;18(2):180–8.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Wen W, Sachdev PS. Extent and distribution of white matter hyperintensities in stroke patients: the Sydney Stroke Study. Stroke. 2004;35(12):2813–9.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Bocti C, Swartz RH, Gao FQ, et al. A new visual rating scale to assess strategic white matter hyperintensities within cholinergic pathways in dementia. Stroke. 2005;36(10):2126–31.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Jung WB, Mun CW, Kim YH, et al. Cortical atrophy, reduced integrity of white matter and cognitive impairment in subcortical vascular dementia of Binswanger type. Psychiatry Clin Neurosci. 2014;68(12):821–32.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Tuladhar AM, van Norden AG, de Laat KF, et al. White matter integrity in small vessel disease is related to cognition. NeuroImage Clin. 2015;7:518–24.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    de Laat KF, Tuladhar AM, van Norden AG, et al. Loss of white matter integrity is associated with gait disorders in cerebral small vessel disease. Brain. 2011;134(Pt 1):73–83.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kim YJ, Kwon HK, Lee JM, et al. Gray and white matter changes linking cerebral small vessel disease to gait disturbances. Neurology. 2016;86(13):1199–207.CrossRefGoogle Scholar
  28. 28.
    Erkinjuntti T, Inzitari D, Pantoni L, et al. Research criteria for subcortical vascular dementia in clinical trials. J Neural Transm Supp. 2000;59:23–30.Google Scholar
  29. 29.
    Mungas D, Jagust WJ, Reed BR, et al. MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer’s disease. Neurology. 2001;57(12):2229–35.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Peres R, De Guio F, Chabriat H, et al. Alterations of the cerebral cortex in sporadic small vessel disease: a systematic review of in vivo MRI data. J Cereb Blood Flow Metab. 2016;36(4):681–95.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Gouw AA, Seewann A, van der Flier WM, et al. Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry. 2011;82(2):126–35.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Smith EE, Schneider JA, Wardlaw JM, et al. Cerebral microinfarcts: the invisible lesions. Lancet Neurol. 2012;11(3):272–82.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Duering M, Righart R, Wollenweber FA, et al. Acute infarcts cause focal thinning in remote cortex via degeneration of connecting fiber tracts. Neurology. 2015;84(16):1685–92.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Seo SW, Ahn J, Yoon U, et al. Cortical thinning in vascular mild cognitive impairment and vascular dementia of subcortical type. J Neuroimaging. 2010;20(1):37–45.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Lerch JP, Pruessner JC, Zijdenbos A, et al. Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cereb Cortex. 2005;15(7):995–1001.PubMedCrossRefGoogle Scholar
  36. 36.
    Singh V, Chertkow H, Lerch JP, et al. Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer’s disease. Brain. 2006;129(11):2885–93.PubMedCrossRefGoogle Scholar
  37. 37.
    Kim CH, Seo SW, Kim GH, et al. Cortical thinning in subcortical vascular dementia with negative 11C-PiB PET. J Alzheimer Dis. 2012;31(2):315–23.CrossRefGoogle Scholar
  38. 38.
    Kim HJ, Ye BS, Yoon CW, et al. Cortical thickness and hippocampal shape in pure vascular mild cognitive impairment and dementia of subcortical type. Eur J Neurol. 2014;21(5):744–51.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Chui HC. Subcortical ischemic vascular dementia. Neurol Clin. 2007;25(3):717–40.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Cummings JL. Frontal-subcortical circuits and human behavior. Arch Neurol. 1993;50(8):873–80.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Thong JY, Du J, Ratnarajah N, et al. Abnormalities of cortical thickness, subcortical shapes, and white matter integrity in subcortical vascular cognitive impairment. Hum Brain Mapp. 2014;35(5):2320–32.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Guimaraes JS, Freire MA, Lima RR, et al. Mechanisms of secondary degeneration in the central nervous system during acute neural disorders and white matter damage. Rev Neurol. 2009;48(6):304–10.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Wang JT, Medress ZA, Barres BA. Axon degeneration: molecular mechanisms of a self-destruction pathway. J Cell Biol. 2012;196(1):7–18.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kovari E, Gold G, Herrmann FR, et al. Cortical microinfarcts and demyelination affect cognition in cases at high risk for dementia. Neurology. 2007;68(12):927–31.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Selden NR, Gitelman DR, Salamon-Murayama N, et al. Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain. 1998;121(Pt 12):2249–57.CrossRefGoogle Scholar
  46. 46.
    Tomimoto H, Ohtani R, Shibata M, et al. Loss of cholinergic pathways in vascular dementia of the Binswanger type. Dement Geriatr Cogn Disord. 2005;19(5–6):282–8.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Phillips OR, Clark KA, Woods RP, et al. Topographical relationships between arcuate fasciculus connectivity and cortical thickness. Hum Brain Mapp. 2011;32(11):1788–801.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Burton EJ, Barber R, Mukaetova-Ladinska EB, et al. Medial temporal lobe atrophy on MRI differentiates Alzheimer’s disease from dementia with Lewy bodies and vascular cognitive impairment: a prospective study with pathological verification of diagnosis. Brain. 2009;132(1):195–203.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Gosche KM, Mortimer JA, Smith CD, et al. Hippocampal volume as an index of Alzheimer neuropathology: findings from the Nun Study. Neurology. 2002;58(10):1476–82.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Du AT, Schuff N, Laakso MP, et al. Effects of subcortical ischemic vascular dementia and AD on entorhinal cortex and hippocampus. Neurology. 2002;58(11):1635–41.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Laakso MP, Partanen K, Riekkinen P, et al. Hippocampal volumes in Alzheimer’s disease, Parkinson’s disease with and without dementia, and in vascular dementia: an MRI study. Neurology. 1996;46(3):678–81.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Zarow C, Vinters HV, Ellis WG, et al. Correlates of hippocampal neuron number in Alzheimer’s disease and ischemic vascular dementia. Ann Neurol. 2005;57(6):896–903.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kim GH, Lee JH, Seo SW, et al. Hippocampal volume and shape in pure subcortical vascular dementia. Neurobiol Aging. 2015;36(1):485–91.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Kim HJ, Kim J, Cho H, et al. Individual subject classification of mixed dementia from pure subcortical vascular dementia based on subcortical shape analysis. PLoS One. 2013;8(10):e75602.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Hagmann P, Cammoun L, Gigandet X, et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 2008;6(7):e159.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Hagmann P, Kurant M, Gigandet X, et al. Mapping human whole-brain structural networks with diffusion MRI. PLoS One. 2007;2(7):e597.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Gong G, He Y, Concha L, et al. Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex. 2009;19(3):524–36.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev Lett. 2001;87(19):198701.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Lawrence AJ, Chung AW, Morris RG, et al. Structural network efficiency is associated with cognitive impairment in small-vessel disease. Neurology. 2014;83(4):304–11.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Tuladhar AM, van Dijk E, Zwiers MP, et al. Structural network connectivity and cognition in cerebral small vessel disease. Hum Brain Mapp. 2016;37(1):300–10.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Tuladhar AM, Reid AT, Shumskaya E, et al. Relationship between white matter hyperintensities, cortical thickness, and cognition. Stroke. 2015;46(2):425–32.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kim HJ, Im K, Kwon H, et al. Clinical effect of white matter network disruption related to amyloid and small vessel disease. Neurology. 2015;85(1):63–70.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Tuladhar AM, van Uden IW, Rutten-Jacobs LC, et al. Structural network efficiency predicts conversion to dementia. Neurology. 2016;86(12):1112–9.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8(9):700–11.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Papma JM, den Heijer T, de Koning I, et al. The influence of cerebral small vessel disease on default mode network deactivation in mild cognitive impairment. NeuroImage Clin. 2012;2:33–42.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Yi L, Wang J, Jia L, et al. Structural and functional changes in subcortical vascular mild cognitive impairment: a combined voxel-based morphometry and resting-state fMRI study. PLoS One. 2012;7(9):e44758.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Ding W, Cao W, Wang Y, et al. Altered functional connectivity in patients with subcortical vascular cognitive impairment—a resting-state functional magnetic resonance imaging study. PLoS One. 2015;10(9):e0138180.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Liu C, Li C, Yin X, et al. Abnormal intrinsic brain activity patterns in patients with subcortical ischemic vascular dementia. PLoS One. 2014;9(2):e87880.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Zhou X, Hu X, Zhang C, et al. Aberrant functional connectivity and structural atrophy in subcortical vascular cognitive impairment: relationship with cognitive impairments. Front Aging Neurosci. 2016;8:14.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Kim HJ, Cha J, Lee JM, et al. Distinctive resting state network disruptions among Alzheimer’s disease, subcortical vascular dementia, and mixed dementia patients. J Alzheimers Dis. 2016;50(3):709–18.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Kim HJ, Yoon CW, Ye BS, Kim E-J, Seo SW, Jeong JH, Na DL. Vascular dementia. In: Dierckx RAJO, Otte A, de Vries EFJ, van Waarde A, Leenders KL, editors. PET and SPECT in neurology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 417–35.Google Scholar
  72. 72.
    Nagata KEN, Maruya H, Yuya H, et al. Can PET data differentiate Alzheimer’s disease from vascular dementia? Ann N Y Acad Sci. 2000;903(1):252–61.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Brooks DJ. The clinical role of PET in cerebrovascular disease. Neurosurg Rev. 1991;14(2):91–6.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Kuwabara Y, Ichiya Y, Sasaki M, et al. Time dependency of the acetazolamide effect on cerebral hemodynamics in patients with chronic occlusive cerebral arteries. Early steal phenomenon demonstrated by [15O]H2O positron emission tomography. Stroke. 1995;26(10):1825–9.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    De Reuck J, Decoo D, Hasenbroekx MC, et al. Acetazolamide vasoreactivity in vascular dementia: a positron emission tomographic study. Eur Neurol. 1999;41(1):31–6.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Yao H, Sadoshima S, Kuwabara Y, et al. Cerebral blood flow and oxygen metabolism in patients with vascular dementia of the Binswanger type. Stroke. 1990;21(12):1694–9.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Tohgi H, Yonezawa H, Takahashi S, et al. Cerebral blood flow and oxygen metabolism in senile dementia of Alzheimer’s type and vascular dementia with deep white matter changes. Neuroradiology. 1998;40(3):131–7.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Tohgi H, Chiba K, Sasaki K, et al. Cerebral perfusion patterns in vascular dementia of Binswanger type compared with senile dementia of Alzheimer type: a SPECT study. J Neurol. 1991;238(7):365–70.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Hanyu H, Shimuzu S, Tanaka Y, et al. Cerebral blood flow patterns in Binswanger’s disease: a SPECT study using three-dimensional stereotactic surface projections. J Neurol Sci. 2004;220(1–2):79–84.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Yang D-W, Kim B-S, Park J-K, et al. Analysis of cerebral blood flow of subcortical vascular dementia with single photon emission computed tomography: Adaptation of statistical parametric mapping. J Neurol Sci. 2002;203–204(Supplement C):199–205.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Shim YS, Yang DW, Kim BS, et al. Comparison of regional cerebral blood flow in two subsets of subcortical ischemic vascular dementia: statistical parametric mapping analysis of SPECT. J Neurol Sci. 2006;250(1–2):85–91.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Wahlund L-O, Bronge L, Savitcheva I, Axelsson R. Neuroimaging in vascular covnitive impairment: Structural and functional imaging in vascular dementia, Oxford textbook of neuroimaging. Oxford University Press, USA, 2015.CrossRefGoogle Scholar
  83. 83.
    Mendez MF, Ottowitz W, Brown CV, et al. Dementia with leukoaraiosis: clinical differentiation by temporoparietal hypometabolism on (18)FDG-PET imaging. Dement Geriatr Cogn Disord. 1999;10(6):518–25.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Pascual B, Prieto E, Arbizu J, et al. Brain glucose metabolism in vascular white matter disease with dementia: differentiation from Alzheimer disease. Stroke. 2010;41(12):2889–93.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Kerrouche N, Herholz K, Mielke R, et al. 18FDG PET in vascular dementia: differentiation from Alzheimer’s disease using voxel-based multivariate analysis. J Cereb Blood Flow Metab. 2006;26(9):1213–21.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Seo SW, Cho SS, Park A, et al. Subcortical vascular versus amnestic mild cognitive impairment: comparison of cerebral glucose metabolism. J Neuroimaging. 2009;19(3):213–9.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Tullberg M, Fletcher E, DeCarli C, et al. White matter lesions impair frontal lobe function regardless of their location. Neurology. 2004;63(2):246–53.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Suri S, Topiwala A, Mackay CE, et al. Using structural and diffusion magnetic resonance imaging to differentiate the dementias. Curr Neurol Neurosci Rep. 2014;14(9):475.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2020

Authors and Affiliations

  1. 1.Department of NeurologyEwha Womans University Mokdong Hospital, Ewha Womans University College of MedicineSeoulSouth Korea
  2. 2.Department of NeurologyKeimyung University Daegu Dongsan HospitalDaeguSouth Korea

Personalised recommendations