Basic Aspect: Neurorepair After Stroke

  • Margherita Zamboni
  • Jens Magnusson
  • Jonas FrisénEmail author
Part of the Stroke Revisited book series (STROREV)


This chapter discusses the scientific premise of stem cell-based therapies aimed at repairing damage produced by cerebrovascular insults in the adult human brain. Understanding the principles that govern stem cell biology will be of crucial importance to help designing treatment strategies for regenerative medicine. For this reason, the chapter is divided in two sections. The first part will touch upon pivotal basic research that has paved the way to a fuller comprehension of neurogenesis in the developing and adult brain. Interestingly, many molecular mechanisms that play roles in neurogenesis are shared between brain development and adulthood. Therefore, studies that have focused on brain formation have also guided investigations around homeostatic neurogenesis, as well as regenerative repair of the adult brain. The second section of this chapter will introduce recent biomedical investigations around the possibilities of initiating ectopic neuroregenerative programmes, or boosting physiological cell turnover rates for regenerative repair. In this context, we will discuss opportunities for promoting endogenous neurogenesis that may be generated from actual or potential stem cells residing throughout the brain. Finally, we will discuss experimental approaches aiming to replace lost neurons using endogenous sources.


  1. 1.
    Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182(3):311–22.PubMedGoogle Scholar
  2. 2.
    Gratzner HG. Monoclonal antibody to 5-bromo–and 5-iododeoxyuridine: a new reagent for detection of DNA replication. Science. 1982;218(4571):474–5.PubMedGoogle Scholar
  3. 3.
    Levin I, Naegler T, Kromer B, Diehl M, Francey RJ, Gomez-Pelaez AJ, Steele LP, Wagenbach D, Weller R, Worthy DE. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2. Tellus B. 2010;62(1):26–46.Google Scholar
  4. 4.
    Spalding KL, Bhardwaj RD, Buchholz BA, Druid H, Frisen J. Retrospective birth dating of cells in humans. Cell. 2005;122(1):133–43.PubMedGoogle Scholar
  5. 5.
    Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Bostrom E, Westerlund I, Vial C, Buchholz BA, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153(6):1219–27.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Bergmann O, Liebl J, Bernard S, Alkass K, Yeung MS, Steier P, Kutschera W, Johnson L, Landen M, Druid H, et al. The age of olfactory bulb neurons in humans. Neuron. 2012;74(4):634–9.PubMedGoogle Scholar
  7. 7.
    Bhardwaj RD, Curtis MA, Spalding KL, Buchholz BA, Fink D, Bjork-Eriksson T, Nordborg C, Gage FH, Druid H, Eriksson PS, et al. Neocortical neurogenesis in humans is restricted to development. Proc Natl Acad Sci U S A. 2006;103(33):12564–8.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci. 2009;32:149–84.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Parnavelas JG, Barfield JA, Franke E, Luskin MB. Separate progenitor cells give rise to pyramidal and nonpyramidal neurons in the rat telencephalon. Cereb Cortex. 1991;1(6):463–8.PubMedGoogle Scholar
  10. 10.
    Altman J. Are new neurons formed in the brains of adult mammals? Science. 1962;135(3509):1127–8.PubMedGoogle Scholar
  11. 11.
    Kaplan MS, Hinds JW. Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science. 1977;197(4308):1092–4.PubMedGoogle Scholar
  12. 12.
    Rakic P. Limits of neurogenesis in primates. Science. 1985;227(4690):1054–6.PubMedGoogle Scholar
  13. 13.
    Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255(5052):1707–10.PubMedGoogle Scholar
  14. 14.
    Richards LJ, Kilpatrick TJ, Bartlett PF. De novo generation of neuronal cells from the adult mouse brain. Proc Natl Acad Sci U S A. 1992;89(18):8591–5.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci. 1996;16(6):2027–33.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4(11):1313–7.PubMedGoogle Scholar
  17. 17.
    Brown J, Cooper-Kuhn CM, Kempermann G, Van Praag H, Winkler J, Gage FH, Kuhn HG. Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci. 2003;17(10):2042–6.PubMedGoogle Scholar
  18. 18.
    van Praag H, Shubert T, Zhao C, Gage FH. Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci. 2005;25(38):8680–5.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Ponti G, Obernier K, Alvarez-Buylla A. Lineage progression from stem cells to new neurons in the adult brain ventricular-subventricular zone. Cell Cycle. 2013;12(11):1649–50.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Schmidt-Hieber C, Jonas P, Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature. 2004;429(6988):184–7.PubMedGoogle Scholar
  21. 21.
    Kheirbek MA, Klemenhagen KC, Sahay A, Hen R. Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat Neurosci. 2012;15(12):1613–20.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Goncalves JT, Schafer ST, Gage FH. Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell. 2016;167(4):897–914.PubMedGoogle Scholar
  23. 23.
    Lepousez G, Valley MT, Lledo PM. The impact of adult neurogenesis on olfactory bulb circuits and computations. Annu Rev Physiol. 2013;75:339–63.PubMedGoogle Scholar
  24. 24.
    Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, Possnert G, Druid H, Frisen J. Neurogenesis in the striatum of the adult human brain. Cell. 2014;156(5):1072–83.PubMedGoogle Scholar
  25. 25.
    Dimou L, Gotz M. Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain. Physiol Rev. 2014;94(3):709–37.PubMedGoogle Scholar
  26. 26.
    Lledo PM, Merkle FT, Alvarez-Buylla A. Origin and function of olfactory bulb interneuron diversity. Trends Neurosci. 2008;31(8):392–400.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A. Single-cell Transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell. 2015;17(3):329–40.PubMedGoogle Scholar
  28. 28.
    Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, Spassky N, Murcia NS, Garcia-Verdugo JM, Marin O, Rubenstein JL, et al. New neurons follow the flow of cerebrospinal fluid in the adult brain. Science. 2006;311(5761):629–32.PubMedGoogle Scholar
  29. 29.
    Silva-Vargas V, Maldonado-Soto AR, Mizrak D, Codega P, Doetsch F. Age-dependent niche signals from the choroid plexus regulate adult neural stem cells. Cell Stem Cell. 2016;19(5):643–52.PubMedGoogle Scholar
  30. 30.
    Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci. 1997;17(13):5046–61.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Ihrie RA, Alvarez-Buylla A. Lake-front property: a unique germinal niche by the lateral ventricles of the adult brain. Neuron. 2011;70(4):674–86.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo JM, Doetsch F. A specialized vascular niche for adult neural stem cells. Cell Stem Cell. 2008;3(3):279–88.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Palma V, Lim DA, Dahmane N, Sanchez P, Brionne TC, Herzberg CD, Gitton Y, Carleton A, Alvarez-Buylla A, Ruiz i Altaba A. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development. 2005;132(2):335–44.PubMedGoogle Scholar
  34. 34.
    Palma V, Ruiz i Altaba A. Hedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex. Development. 2004;131(2):337–45.PubMedGoogle Scholar
  35. 35.
    Imayoshi I, Kageyama R. The role of notch signaling in adult neurogenesis. Mol Neurobiol. 2011;44(1):7–12.PubMedGoogle Scholar
  36. 36.
    Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron. 2000;28(3):713–26.PubMedGoogle Scholar
  37. 37.
    Berg DA, Kirkham M, Wang H, Frisen J, Simon A. Dopamine controls neurogenesis in the adult salamander midbrain in homeostasis and during regeneration of dopamine neurons. Cell Stem Cell. 2011;8(4):426–33.PubMedGoogle Scholar
  38. 38.
    Kirsche K, Kirsche W. Regenerative processes in the telencephalon of Ambystoma Mexicanum. J Hirnforsch. 1964;7:421–36.PubMedGoogle Scholar
  39. 39.
    Amamoto R, Huerta VG, Takahashi E, Dai G, Grant AK, Fu Z, Arlotta P. Adult axolotls can regenerate original neuronal diversity in response to brain injury. elife. 2016;5:e13998.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Hol EM, Pekny M. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol. 2015;32:121–30.PubMedGoogle Scholar
  41. 41.
    Goritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, Frisen J. A pericyte origin of spinal cord scar tissue. Science. 2011;333(6039):238–42.PubMedGoogle Scholar
  42. 42.
    Godwin JW, Rosenthal N. Scar-free wound healing and regeneration in amphibians: immunological influences on regenerative success. Differentiation. 2014;87(1-2):66–75.PubMedGoogle Scholar
  43. 43.
    Tom VJ, Steinmetz MP, Miller JH, Doller CM, Silver J. Studies on the development and behavior of the dystrophic growth cone, the hallmark of regeneration failure, in an in vitro model of the glial scar and after spinal cord injury. J Neurosci. 2004;24(29):6531–9.PubMedPubMedCentralGoogle Scholar
  44. 44.
    van Niekerk EA, Tuszynski MH, Lu P, Dulin JN. Molecular and cellular mechanisms of axonal regeneration after spinal cord injury. Mol Cell Proteomics. 2016;15(2):394–408.PubMedGoogle Scholar
  45. 45.
    Di Maio A, Skuba A, Himes BT, Bhagat SL, Hyun JK, Tessler A, Bishop D, Son YJ. In vivo imaging of dorsal root regeneration: rapid immobilization and presynaptic differentiation at the CNS/PNS border. J Neurosci. 2011;31(12):4569–82.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Cattin AL, Lloyd AC. The multicellular complexity of peripheral nerve regeneration. Curr Opin Neurobiol. 2016;39:38–46.PubMedGoogle Scholar
  47. 47.
    Vrbova G, Mehra N, Shanmuganathan H, Tyreman N, Schachner M, Gordon T. Chemical communication between regenerating motor axons and Schwann cells in the growth pathway. Eur J Neurosci. 2009;30(3):366–75.PubMedGoogle Scholar
  48. 48.
    Magnusson JP, Goritz C, Tatarishvili J, Dias DO, Smith EM, Lindvall O, Kokaia Z, Frisen J. A latent neurogenic program in astrocytes regulated by notch signaling in the mouse. Science. 2014;346(6206):237–41.PubMedGoogle Scholar
  49. 49.
    Yulyaningsih E, Rudenko IA, Valdearcos M, Dahlen E, Vagena E, Chan A, Alvarez-Buylla A, Vaisse C, Koliwad SK, Xu AW. Acute Lesioning and rapid repair of hypothalamic neurons outside the blood-brain barrier. Cell Rep. 2017;19(11):2257–71.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Gould E. How widespread is adult neurogenesis in mammals? Nat Rev Neurosci. 2007;8(6):481–8.PubMedGoogle Scholar
  51. 51.
    Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8(9):963–70.Google Scholar
  52. 52.
    Carlen M, Meletis K, Goritz C, Darsalia V, Evergren E, Tanigaki K, Amendola M, Barnabe-Heider F, Yeung MS, Naldini L, et al. Forebrain ependymal cells are notch-dependent and generate neuroblasts and astrocytes after stroke. Nat Neurosci. 2009;12(3):259–67.PubMedGoogle Scholar
  53. 53.
    Arsenijevic Y, Villemure JG, Brunet JF, Bloch JJ, Deglon N, Kostic C, Zurn A, Aebischer P. Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp Neurol. 2001;170(1):48–62.PubMedGoogle Scholar
  54. 54.
    Palmer TD, Schwartz PH, Taupin P, Kaspar B, Stein SA, Gage FH. Cell culture. Progenitor cells from human brain after death. Nature. 2001;411(6833):42–3.PubMedGoogle Scholar
  55. 55.
    Kirschenbaum B, Nedergaard M, Preuss A, Barami K, Fraser RA, Goldman SA. In vitro neuronal production and differentiation by precursor cells derived from the adult human forebrain. Cereb Cortex. 1994;4(6):576–89.PubMedGoogle Scholar
  56. 56.
    Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Manuel-Garcia Verdugo J, et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature. 2004;427(6976):740–4.PubMedGoogle Scholar
  57. 57.
    Faiz M, Sachewsky N, Gascon S, Bang KW, Morshead CM, Nagy A. Adult neural stem cells from the subventricular zone give rise to reactive astrocytes in the cortex after stroke. Cell Stem Cell. 2015;17(5):624–34.PubMedGoogle Scholar
  58. 58.
    Ohira K, Furuta T, Hioki H, Nakamura KC, Kuramoto E, Tanaka Y, Funatsu N, Shimizu K, Oishi T, Hayashi M, et al. Ischemia-induced neurogenesis of neocortical layer 1 progenitor cells. Nat Neurosci. 2010;13(2):173–9.PubMedGoogle Scholar
  59. 59.
    Huttner HB, Bergmann O, Salehpour M, Racz A, Tatarishvili J, Lindgren E, Csonka T, Csiba L, Hortobagyi T, Mehes G, et al. The age and genomic integrity of neurons after cortical stroke in humans. Nat Neurosci. 2014;17(6):801–3.PubMedGoogle Scholar
  60. 60.
    Kokaia Z, Lindvall O. Stem cell repair of striatal ischemia. Prog Brain Res. 2012;201:35–53.PubMedGoogle Scholar
  61. 61.
    Kokaia Z, Thored P, Arvidsson A, Lindvall O. Regulation of stroke-induced neurogenesis in adult brain--recent scientific progress. Cereb Cortex. 2006;16(Suppl 1):i162–7.PubMedGoogle Scholar
  62. 62.
    Benraiss A, Chmielnicki E, Lerner K, Roh D, Goldman SA. Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci. 2001;21(17):6718–31.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Benraiss A, Bruel-Jungerman E, Lu G, Economides AN, Davidson B, Goldman SA. Sustained induction of neuronal addition to the adult rat neostriatum by AAV4-delivered noggin and BDNF. Gene Ther. 2012;19(5):483–93.PubMedGoogle Scholar
  64. 64.
    Liu F, You Y, Li X, Ma T, Nie Y, Wei B, Li T, Lin H, Yang Z. Brain injury does not alter the intrinsic differentiation potential of adult neuroblasts. J Neurosci. 2009;29(16):5075–87.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Hou SW, Wang YQ, Xu M, Shen DH, Wang JJ, Huang F, Yu Z, Sun FY. Functional integration of newly generated neurons into striatum after cerebral ischemia in the adult rat brain. Stroke. 2008;39(10):2837–44.PubMedGoogle Scholar
  66. 66.
    Cregg JM, DePaul MA, Filous AR, Lang BT, Tran A, Silver J. Functional regeneration beyond the glial scar. Exp Neurol. 2014;253:197–207.PubMedGoogle Scholar
  67. 67.
    Lindvall O, Bjorklund A. Cell therapeutics in Parkinson's disease. Neurotherapeutics. 2011;8(4):539–48.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, Brock J, Blesch A, Rosenzweig ES, Havton LA, et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell. 2012;150(6):1264–73.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Meyer HS, Schwarz D, Wimmer VC, Schmitt AC, Kerr JN, Sakmann B, Helmstaedter M. Inhibitory interneurons in a cortical column form hot zones of inhibition in layers 2 and 5A. Proc Natl Acad Sci U S A. 2011;108(40):16807–12.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Tremblay R, Lee S, Rudy B. GABAergic interneurons in the Neocortex: from cellular properties to circuits. Neuron. 2016;91(2):260–92.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Martinez-Cerdeno V, Noctor SC, Espinosa A, Ariza J, Parker P, Orasji S, Daadi MM, Bankiewicz K, Alvarez-Buylla A, Kriegstein AR. Embryonic MGE precursor cells grafted into adult rat striatum integrate and ameliorate motor symptoms in 6-OHDA-lesioned rats. Cell Stem Cell. 2010;6(3):238–50.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2020

Authors and Affiliations

  • Margherita Zamboni
    • 1
  • Jens Magnusson
    • 1
  • Jonas Frisén
    • 1
    Email author
  1. 1.Department of Cell and Molecular BiologyKarolinska InstituteStockholmSweden

Personalised recommendations