Advertisement

Emerging Mechanism of Cell Death Caused by Stroke: A Role of Neurovascular Unit

  • Ryo Ohtomo
  • Ken AraiEmail author
Chapter
  • 31 Downloads
Part of the Stroke Revisited book series (STROREV)

Abstract

Stroke is one of the leading causes of death and even the survivors suffer from severe aftereffects. Although effective treatments have long been awaited, early therapeutic approaches focused on neuronal death had been insufficient due to the heterogeneous etiology of stroke. From the fact that brain function along with dysfunction arise from integrated interactions between a network of cellular components, conceptual structural unit, so-called “neurovascular unit” was proposed as a new paradigm for the investigation of stroke. Since then, variety of cell–cell and cell–extracellular matrix interactions have been discovered, which lead us to profound understanding of the pathophysiology of stroke. Besides neuronal damage, pathophysiology of stroke also consists of glial activation and transformation, vascular and blood–brain barrier alteration, and inflammatory reactions. Recent investigation shows that mediators of these reactions are not only detrimental but also could turn out to be beneficial for neurovascular repair in the chronic phase of the disease. In this chapter, we briefly overview the mechanisms of cell–cell interactions within the neurovascular unit under the normal conditions, and then discuss the crosstalk between different cell types during the acute and chronic phases of stroke.

References

  1. 1.
    Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci. 2003;4(5):399–415.PubMedGoogle Scholar
  2. 2.
    Niwa K, Araki E, Morham SG, Ross ME, Iadecola C. Cyclooxygenase-2 contributes to functional hyperemia in whisker-barrel cortex. J Neurosci. 2000;20(2):763–70.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Bhardwaj A, Northington FJ, Carhuapoma JR, Falck JR, Harder DR, Traystman RJ, et al. P-450 epoxygenase and NO synthase inhibitors reduce cerebral blood flow response to N-methyl-D-aspartate. Am J Physiol Heart Circ Physiol. 2000;279(4):H1616–24.PubMedGoogle Scholar
  4. 4.
    Scremin OU, Rovere AA, Raynald AC, Giardini A. Cholinergic control of blood flow in the cerebral cortex of the rat. Stroke. 1973;4(2):233–9.PubMedGoogle Scholar
  5. 5.
    De Michele M, Touzani O, Foster AC, Fieschi C, Sette G, McCulloch J. Corticotropin-releasing factor: effect on cerebral blood flow in physiologic and ischaemic conditions. Exp Brain Res. 2005;165(3):375–82.PubMedGoogle Scholar
  6. 6.
    Abounader R, Villemure JG, Hamel E. Characterization of neuropeptide Y (NPY) receptors in human cerebral arteries with selective agonists and the new Y1 antagonist BIBP 3226. Br J Pharmacol. 1995;116(4):2245–50.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Gotoh J, Kuang TY, Nakao Y, Cohen DM, Melzer P, Itoh Y, et al. Regional differences in mechanisms of cerebral circulatory response to neuronal activation. Am J Physiol Heart Circ Physiol. 2001;280(2):H821–9.PubMedGoogle Scholar
  8. 8.
    Cauli B, Tong XK, Rancillac A, Serluca N, Lambolez B, Rossier J, et al. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J Neurosci. 2004;24(41):8940–9.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Yaksh TL, Wang JY, Go VL. Cortical vasodilatation produced by vasoactive intestinal polypeptide (VIP) and by physiological stimuli in the cat. J Cereb Blood Flow Metab. 1987;7(3):315–26.PubMedGoogle Scholar
  10. 10.
    Ruhrberg C, Bautch VL. Neurovascular development and links to disease. Cell Mol Life Sci. 2013;70(10):1675–84.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Ma S, Kwon HJ, Johng H, Zang K, Huang Z. Radial glial neural progenitors regulate nascent brain vascular network stabilization via inhibition of Wnt signaling. PLoS Biol. 2013;11(1):e1001469.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Lacoste B, Comin CH, Ben-Zvi A, Kaeser PS, Xu X, Costa Lda F, et al. Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex. Neuron. 2014;83(5):1117–30.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci. 2004;5(5):347–60.PubMedGoogle Scholar
  14. 14.
    Stamatovic SM, Johnson AM, Keep RF, Andjelkovic AV. Junctional proteins of the blood-brain barrier: new insights into function and dysfunction. Tissue Barriers. 2016;4(1):e1154641.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990;429:47–62.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Betz AL, Firth JA, Goldstein GW. Polarity of the blood-brain barrier: distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res. 1980;192(1):17–28.PubMedGoogle Scholar
  17. 17.
    Makita T, Sucov HM, Gariepy CE, Yanagisawa M, Ginty DD. Endothelins are vascular-derived axonal guidance cues for developing sympathetic neurons. Nature. 2008;452(7188):759–63.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Ohab JJ, Fleming S, Blesch A, Carmichael ST. A neurovascular niche for neurogenesis after stroke. J Neurosci. 2006;26(50):13007–16.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Arai K, Lo EH. Oligovascular signaling in white matter stroke. Biol Pharm Bull. 2009;32(10):1639–44.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Arai K, Lo EH. An oligovascular niche: cerebral endothelial cells promote the survival and proliferation of oligodendrocyte precursor cells. J Neurosci. 2009;29(14):4351–5.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Agulhon C, Petravicz J, McMullen AB, Sweger EJ, Minton SK, Taves SR, et al. What is the role of astrocyte calcium in neurophysiology? Neuron. 2008;59(6):932–46.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Nagy JI, Rash JE. Astrocyte and oligodendrocyte connexins of the glial syncytium in relation to astrocyte anatomical domains and spatial buffering. Cell Commun Adhes. 2003;10(4-6):401–6.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci. 2007;10(11):1369–76.PubMedGoogle Scholar
  24. 24.
    Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell. 2005;120(3):421–33.PubMedGoogle Scholar
  25. 25.
    Myer DJ, Gurkoff GG, Lee SM, Hovda DA, Sofroniew MV. Essential protective roles of reactive astrocytes in traumatic brain injury. Brain. 2006;129(Pt 10):2761–72.PubMedGoogle Scholar
  26. 26.
    Xin H, Li Y, Shen LH, Liu X, Wang X, Zhang J, et al. Increasing tPA activity in astrocytes induced by multipotent mesenchymal stromal cells facilitate neurite outgrowth after stroke in the mouse. PLoS One. 2010;5(2):e9027.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4(147):147ra11.Google Scholar
  28. 28.
    Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci. 2016;19(6):771–83.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Winkler EA, Bell RD, Zlokovic BV. Central nervous system pericytes in health and disease. Nat Neurosci. 2011;14(11):1398–405.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Gaengel K, Genove G, Armulik A, Betsholtz C. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol. 2009;29(5):630–8.PubMedGoogle Scholar
  31. 31.
    Candelario-Jalil E, Yang Y, Rosenberg GA. Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience. 2009;158(3):983–94.PubMedGoogle Scholar
  32. 32.
    Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature. 2010;468(7323):562–6.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Graeber MB. Changing face of microglia. Science. 2010;330(6005):783–8.PubMedGoogle Scholar
  34. 34.
    Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8(6):752–8.PubMedGoogle Scholar
  35. 35.
    Ren L, Lubrich B, Biber K, Gebicke-Haerter PJ. Differential expression of inflammatory mediators in rat microglia cultured from different brain regions. Brain Res Mol Brain Res. 1999;65(2):198–205.PubMedGoogle Scholar
  36. 36.
    Olah M, Ping G, De Haas AH, Brouwer N, Meerlo P, Van Der Zee EA, et al. Enhanced hippocampal neurogenesis in the absence of microglia T cell interaction and microglia activation in the murine running wheel model. Glia. 2009;57(10):1046–61.PubMedGoogle Scholar
  37. 37.
    Hickey WF, Kimura H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science. 1988;239(4837):290–2.PubMedGoogle Scholar
  38. 38.
    Bayerl SH, Niesner R, Cseresnyes Z, Radbruch H, Pohlan J, Brandenburg S, et al. Time lapse in vivo microscopy reveals distinct dynamics of microglia-tumor environment interactions-a new role for the tumor perivascular space as highway for trafficking microglia. Glia. 2016;64(7):1210–26.PubMedGoogle Scholar
  39. 39.
    Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A. Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci. 2006;26(30):7907–18.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Scholz J, Klein MC, Behrens TE, Johansen-Berg H. Training induces changes in white-matter architecture. Nat Neurosci. 2009;12(11):1370–1.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Juraska JM, Kopcik JR. Sex and environmental influences on the size and ultrastructure of the rat corpus callosum. Brain Res. 1988;450(1-2):1–8.PubMedGoogle Scholar
  42. 42.
    Griffiths I, Klugmann M, Anderson T, Yool D, Thomson C, Schwab MH, et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science. 1998;280(5369):1610–3.PubMedGoogle Scholar
  43. 43.
    Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet. 2003;33(3):366–74.PubMedGoogle Scholar
  44. 44.
    Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature. 2012;487(7408):443–8.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Wilkins A, Majed H, Layfield R, Compston A, Chandran S. Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. J Neurosci. 2003;23(12):4967–74.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Wang S, Sdrulla AD, Disibio G, Bush G, Nofziger D, Hicks C, et al. Notch receptor activation inhibits oligodendrocyte differentiation. Neuron. 1998;21(1):63–75.PubMedGoogle Scholar
  47. 47.
    Charles P, Hernandez MP, Stankoff B, Aigrot MS, Colin C, Rougon G, et al. Negative regulation of central nervous system myelination by polysialylated-neural cell adhesion molecule. Proc Natl Acad Sci U S A. 2000;97(13):7585–90.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z, et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci. 2005;8(6):745–51.PubMedGoogle Scholar
  49. 49.
    Etxeberria A, Mangin JM, Aguirre A, Gallo V. Adult-born SVZ progenitors receive transient synapses during remyelination in corpus callosum. Nat Neurosci. 2010;13(3):287–9.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Pham LD, Hayakawa K, Seo JH, Nguyen MN, Som AT, Lee BJ, et al. Crosstalk between oligodendrocytes and cerebral endothelium contributes to vascular remodeling after white matter injury. Glia. 2012;60(6):875–81.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Franklin RJ, Ffrench-Constant C. Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci. 2008;9(11):839–55.PubMedGoogle Scholar
  52. 52.
    Joutel A, Haddad I, Ratelade J, Nelson MT. Perturbations of the cerebrovascular matrisome: a convergent mechanism in small vessel disease of the brain? J Cereb Blood Flow Metab. 2016;36(1):143–57.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Lo EH, Moskowitz MA, Jacobs TP. Exciting, radical, suicidal: how brain cells die after stroke. Stroke. 2005;36(2):189–92.PubMedGoogle Scholar
  54. 54.
    Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10(12):826–37.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Macrez R, Ali C, Toutirais O, Le Mauff B, Defer G, Dirnagl U, et al. Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol. 2011;10(5):471–80.PubMedGoogle Scholar
  56. 56.
    Asahi M, Asahi K, Jung JC, del Zoppo GJ, Fini ME, Lo EH. Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab. 2000;20(12):1681–9.PubMedGoogle Scholar
  57. 57.
    Gasche Y, Fujimura M, Morita-Fujimura Y, Copin JC, Kawase M, Massengale J, et al. Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice: a possible role in blood-brain barrier dysfunction. J Cereb Blood Flow Metab. 1999;19(9):1020–8.PubMedGoogle Scholar
  58. 58.
    Heo JH, Lucero J, Abumiya T, Koziol JA, Copeland BR, del Zoppo GJ. Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. J Cereb Blood Flow Metab. 1999;19(6):624–33.PubMedGoogle Scholar
  59. 59.
    Montaner J, Alvarez-Sabin J, Molina C, Angles A, Abilleira S, Arenillas J, et al. Matrix metalloproteinase expression after human cardioembolic stroke: temporal profile and relation to neurological impairment. Stroke. 2001;32(8):1759–66.PubMedGoogle Scholar
  60. 60.
    Kelly PJ, Morrow JD, Ning M, Koroshetz W, Lo EH, Terry E, et al. Oxidative stress and matrix metalloproteinase-9 in acute ischemic stroke: the biomarker evaluation for antioxidant therapies in stroke (BEAT-stroke) study. Stroke. 2008;39(1):100–4.PubMedGoogle Scholar
  61. 61.
    Rosenberg GA, Estrada EY, Dencoff JE. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke. 1998;29(10):2189–95.PubMedGoogle Scholar
  62. 62.
    Lo EH. Experimental models, neurovascular mechanisms and translational issues in stroke research. Br J Pharmacol. 2008;153(Suppl 1):S396–405.PubMedGoogle Scholar
  63. 63.
    Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–72.PubMedGoogle Scholar
  64. 64.
    Taguchi A, Soma T, Tanaka H, Kanda T, Nishimura H, Yoshikawa H, et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest. 2004;114(3):330–8.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Ding G, Jiang Q, Li L, Zhang L, Zhang ZG, Ledbetter KA, et al. Angiogenesis detected after embolic stroke in rat brain using magnetic resonance T2∗WI. Stroke. 2008;39(5):1563–8.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Krupinski J, Kumar P, Kumar S, Kaluza J. Increased expression of TGF-beta 1 in brain tissue after ischemic stroke in humans. Stroke. 1996;27(5):852–7.PubMedGoogle Scholar
  67. 67.
    Zhao BQ, Wang S, Kim HY, Storrie H, Rosen BR, Mooney DJ, et al. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med. 2006;12(4):441–5.PubMedGoogle Scholar
  68. 68.
    Lee SR, Kim HY, Rogowska J, Zhao BQ, Bhide P, Parent JM, et al. Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke. J Neurosci. 2006;26(13):3491–5.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Hayakawa K, Pham LD, Som AT, Lee BJ, Guo S, Lo EH, et al. Vascular endothelial growth factor regulates the migration of oligodendrocyte precursor cells. J Neurosci. 2011;31(29):10666–70.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Butt AM, Ibrahim M, Ruge FM, Berry M. Biochemical subtypes of oligodendrocyte in the anterior medullary velum of the rat as revealed by the monoclonal antibody rip. Glia. 1995;14(3):185–97.PubMedGoogle Scholar
  71. 71.
    Orthmann-Murphy JL, Abrams CK, Scherer SS. Gap junctions couple astrocytes and oligodendrocytes. J Mol Neurosci. 2008;35(1):101–16.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Arai K, Lo EH. Astrocytes protect oligodendrocyte precursor cells via MEK/ERK and PI3K/Akt signaling. J Neurosci Res. 2010;88(4):758–63.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Nishiyama A, Komitova M, Suzuki R, Zhu X. Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci. 2009;10(1):9–22.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2020

Authors and Affiliations

  1. 1.Neuroprotection Research Laboratory, Departments of Radiology and NeurologyMassachusetts General Hospital and Harvard Medical SchoolCharlestownUSA

Personalised recommendations