Imaging in Differentiated Thyroid Cancer

  • Sabaretnam Mayilvaganan
  • Aromal Chekavar
  • Roma Pradhan
  • Amit Agarwal


It cannot be overemphasized that manual palpation of thyroid nodules is extremely variable between even experienced clinicians and as such imaging with ultrasound, especially surgeon-performed ultrasound, has become essential to the evaluation of the thyroid gland. Surgeon-performed ultrasound is rapidly becoming an extension of the physical examination, adding images containing objective information to the subjective palpation by the surgeon’s hands. Various imaging tools play key roles in various phases in treatment of thyroid cancer. Various imaging modalities comprise of:
  • High-resolution ultrasonography

  • Contrast-enhanced computerized tomography

  • Magnetic resonance tomography

  • Radioiodine scans

  • Positron emission tomography


  1. 1.
    Cooper DS, Doherty GM, Haugen BR, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19:1167–214.CrossRefGoogle Scholar
  2. 2.
    Ezzat S, Sarti DA, Cain DR, Braunstein GD. Thyroid incidentalomas. Prevalence by palpation and ultrasonography. Arch Intern Med. 1994;154(16):1838–40.CrossRefGoogle Scholar
  3. 3.
    Anil G, Hegde A, Chong FH. Thyroid nodules: risk stratification for malignancy with ultrasound and guided biopsy. Cancer Imaging. 2011;11:209–23. ReviewCrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Papini E, Guglielmi R, Bianchini A, et al. Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J Clin Endocrinol Metab. 2002;87(5):1941–6.CrossRefGoogle Scholar
  5. 5.
    Wienke JR, Chong WK, Fielding JR, et al. Sonographic features of benign thyroid nodules: interobserver reliability and overlap with malignancy. J Ultrasound Med. 2003;22(10):1027–31.CrossRefGoogle Scholar
  6. 6.
    Cerbone G, Spiezia S, Colao A, et al. Power Doppler improves the diagnostic accuracy of color Doppler ultrasonography in cold thyroid nodules: follow-up results. Horm Res. 1999;52(1):19–24.PubMedGoogle Scholar
  7. 7.
    Fish SA, Langer JE, Mandel SJ. Sonographic imaging of thyroid nodules and cervical lymph nodes. Endocrinol Metab Clin North Am 2008;37(2):401–417., ix. doi: Review.CrossRefGoogle Scholar
  8. 8.
    Jeh SK, Jung SL, Kim BS, et al. Evaluating the degree of conformity of papillary carcinoma and follicular carcinoma to the reported ultrasonographic findings of malignant thyroid tumor. Korean J Radiol. 2007;8(3):192–7.CrossRefGoogle Scholar
  9. 9.
    Cappelli C, Pirola I, Cumetti D, et al. Is the anteroposterior and transverse diameter ratio of nonpalpable thyroid nodules a sonographic criteria for recommending fine-needle aspiration cytology? Clin Endocrinol (Oxf). 2005;63(6):689–93.CrossRefGoogle Scholar
  10. 10.
    Kuna SK, Bracic I, Tesic V, et al. Ultrasonographic differentiation of benign from malignant neck lymphadenopathy in thyroid cancer. J Ultrasound Med. 2006;25(12):1531–7. quiz 1538–40CrossRefGoogle Scholar
  11. 11.
    Horvath E, Majlis S, Rossi R, Franco C, Niedmann JP, Castro A, et al. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. J Clin Endocrinol Metab. 2009;94(5):1748–51.CrossRefGoogle Scholar
  12. 12.
    Kwak JY, Han KH, Yoon JH, Moon HJ, Son EJ, Park SH, et al. Thyroid imaging reporting and data system for 257 US features of nodules: a step in establishing better stratification of cancer risk. Radiology. 2011;260(3):892–9.CrossRefGoogle Scholar
  13. 13.
    Rago T, Santini F, Scutari M, Pinchera A, Vitti P. Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules. J Clin Endocrinol Metab. 2007;92(8):2917–22. Epub 2007 May 29CrossRefGoogle Scholar
  14. 14.
    Choi JS, Kim J, Kwak JY, Kim MJ, Chang HS, Kim EK. Preoperative staging of papillary thyroid carcinoma: comparison of ultrasound imaging and CT. Am J Roentgenol. 2009;193(3):871–8. Scholar
  15. 15.
    Yoon DY, Chang SK, Choi CS, Yun EJ, Seo YL, Nam ES, Cho SJ, Rho YS, Ahn HY. The prevalence and significance of incidental thyroid nodules identified on computed tomography. J Comput Assist Tomogr. 2008;32(5):810–5. Scholar
  16. 16.
    Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Wartofsky L. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133. ReviewCrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Takashima S, Takayama F, Wang J, Kobayashi S, Kadoya M. Using MR imaging to predict invasion of the recurrent laryngeal nerve by thyroid carcinoma. Am J Roentgenol. 2003;180:837–42. Scholar
  18. 18.
    Wang JC, Takashima S, Takayama F, et al. Tracheal invasion by thyroid carcinoma: prediction using MR imaging. Am J Roentgenol. 2001;177:929–36. Scholar
  19. 19.
    Roychowdhury S, Loevner LA, Yousem DM, Chalian A, Montone KT. MR imaging for predicting neoplastic invasion of the cervical esophagus. Am J Neuroradiol. 2000;21:1681–7.PubMedGoogle Scholar
  20. 20.
    Yousem DM, Hatabu H, Hurst RW, et al. Carotid artery invasion by head and neck masses: prediction with MR imaging. Radiology. 1995;195:715–20.CrossRefGoogle Scholar
  21. 21.
    Shetty SK, Maher MM, Hahn PF, Halpern EF, Aquino SL. Significance of incidental thyroid lesions detected on CT: correlation among CT, sonography, and pathology. Am J Roentgenol. 2006;187(5):1349–56. Erratum in: Am J Roentgenol. 2007;188(1):8.CrossRefGoogle Scholar
  22. 22.
    Nimmons GL, Funk GF, Graham MM, Pagedar NA. Urinary iodine excretion after contrast computed tomography scan: implications for radioactive iodine use. JAMA Otolaryngol Head Neck Surg. 2013;139(5):479–82. Scholar
  23. 23.
    Sohn SY, Choi JH, Kim NK, Joung JY, Cho YY, Park SM, Kim TH, Jin SM, Bae JC, Lee SY, Chung JH, Kim SW. The impact of iodinated contrast agent administered during preoperative computed tomography scan on body iodine pool in patients with differentiated thyroid cancer preparing for radioactive iodine treatment. Thyroid. 2014;24(5):872–7. Epub 2014 Mar 6CrossRefPubMedGoogle Scholar
  24. 24.
    Padovani RP, Kasamatsu TS, Nakabashi CC, Camacho CP, Andreoni DM, Malouf EZ, Marone MM, Maciel RM, Biscolla RP. One month is sufficient for urinary iodine to return to its baseline value after the use of water-soluble iodinated contrast agents in post-thyroidectomy patients requiring radioiodine therapy. Thyroid. 2012;22(9):926–30. Epub 2012 Jul 24CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mishra A, Pradhan PK, Gambhir S, Sabaretnam M, Gupta A, Babu S. Preoperative contrast-enhanced computerized tomography should not delay radioiodine ablation in differentiated thyroid carcinoma patients. J Surg Res. 2015;193(2):731–7. Epub 2014 Aug 12CrossRefPubMedGoogle Scholar
  26. 26.
    Lee SY, Chang DL, He X, Pearce EN, Braverman LE, Leung AM. Urinary iodine excretion and serum thyroid function in adults after iodinated contrast administration. Thyroid. 2015;25(5):471–7. Epub 2015 Mar 23CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2018

Authors and Affiliations

  • Sabaretnam Mayilvaganan
    • 1
  • Aromal Chekavar
    • 1
  • Roma Pradhan
    • 2
  • Amit Agarwal
    • 1
  1. 1.Department of Endocrine SurgerySanjay Gandhi Post Graduate Institute of Medical SciencesLucknowIndia
  2. 2.Department of Endocrine SurgeryDr Ram Manohar Lohia Institute of Medical SciencesLucknowIndia

Personalised recommendations