The Knowledge Base of General Systemology

  • David Rousseau
  • Jennifer Wilby
  • Julie Billingham
  • Stefan Blachfellner
Part of the Translational Systems Sciences book series (TSS, volume 13)


The search for a foundational general systems theory (GST*) formally became a scientific enterprise with the founding of the Society for the Advancement of General Systems Theory in 1954. Many scientific advances have been made towards a GST*, but GST* is still incomplete and there is a rich ongoing debate about the nature, structure and value of GST*. In this chapter we argue that the general theory of a discipline has a generic structure, which can be inferred by attending to the process by which disciplines build up their knowledge base. We develop a model of this generic structure and then use it to envision the structure and scope of GST*. This provides a principled baseline for assessing the developmental status of GST*, planning work towards its completion, and defending the potential value of GST*.


General Systems Theory GST GST* General Systems Transdisciplinarity GSTD Boulding AKG model 


  1. Bailey, K. D. (1994). Typologies and taxonomies: An introduction to classification techniques. Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
  2. Bard, J. B. L., & Rhee, S. Y. (2004). Ontologies in biology: Design, applications and future challenges. Nature Reviews Genetics, 5(3), 213–222.CrossRefGoogle Scholar
  3. Billingham, J. (2014a). GST as a route to new systemics. Presented at the 22nd European Meeting on Cybernetics and Systems Research (EMCSR 2014), 2014, Vienna, Austria. In EMCSR 2014: Civilisation at the crossroads – Response and responsibility of the systems sciences. Book of Abstracts (J. M. Wilby, S. Blachfellner, and W. Hofkirchner, Eds) (pp. 435–442). Vienna: EMCSR.Google Scholar
  4. Billingham, J. (2014b). In Search of GST. Position paper for the 17th conversation of the International Federation for Systems Research on the subject of ‘philosophical foundations for the modern systems movement’, St. Magdalena, Linz, Austria, 27 April–2 may 2014, pp. 1–4.Google Scholar
  5. Billingham, J. (2015). GST* as the unifying theory of the systems sciences. In D. Rousseau, J. Wilby, J. Billingham, S. Blachfellner (Eds.), Systems philosophy and its relevance to systems engineering. Workshop held on 11 July 2015 at the International symposium of the international council on systems engineering (INCOSE) in Seattle, Washington, USA.
  6. Bogdanov, A. A. (1913). Tektologiya: Vseobschaya Organizatsionnaya Nauka [Tektology: Universal organizational science] (3 vols). Saint Petersburg: Semyonov’ Publisher.Google Scholar
  7. Boulding, K. E. (1956). General systems theory – The skeleton of science. Management Science, 2(3), 197–208.CrossRefGoogle Scholar
  8. Bunge, M. (1979). Ontology II: A world of systems. Dordrecht: Reidel.Google Scholar
  9. Bunge, M. (2014). Big questions come in bundles, hence they should be tackled systemically. Systema, 2(2), 4–13.Google Scholar
  10. Francois, C. (2006). Transdisciplinary unified theory. Systems Research and Behavioral Science, 23(5), 617–624.CrossRefGoogle Scholar
  11. Friendshuh, L., & Troncale, L. R. (2012). Identifying fundamental systems processes for a general theory of systems. In Proceedings of the 56th annual conference, International Society for the Systems Sciences (ISSS), July 15–20 (23 pp.) San Jose State UniversityGoogle Scholar
  12. Gillett, C., & Loewer, B. (Eds.). (2001). Physicalism and its discontents. New York: Cambridge University Press.Google Scholar
  13. Gunderson, L. H., & Holling, C. S. (Eds.). (2001). Panarchy: Understanding transformations in human and natural systems. Washington, DC: Island Press.Google Scholar
  14. Hill, D. P., Smith, B., McAndrews-Hill, M. S., & Blake, J. A. (2008). Gene ontology annotations: What they mean and where they come from. BMC Bioinformatics, 9(5), 1–9.Google Scholar
  15. Koestler, A. (1967). The ghost in the machine. Chicago: Henry Regnery.Google Scholar
  16. Laszlo, E. (1987). Evolution: The grand synthesis. Boston: New Science Library.Google Scholar
  17. Laszlo, E. (1994). An introduction to general evolution theory. Journal of Biological Systems, 2(1), 105–110.CrossRefGoogle Scholar
  18. Laszlo, E. (1996a). Evolution: Foundations of a general theory. Cresskill, NJ: Hampton Press.Google Scholar
  19. Laszlo, A. (1996b). Evolutionary systems design: Way beyond the two cultures. In Proceedings of the Conversation on the comprehensive redesign of societal systems, International Systems Institute, Pacific Grove, CA.Google Scholar
  20. Laszlo, A. (2001). The epistemological foundations of evolutionary systems design. Systems Research and Behavioral Science, 18(4), 307–321.CrossRefGoogle Scholar
  21. Martin, J. (2011). INCOSE Systems science charter. INCOSE. Retrieved from
  22. Mayor, C., & Robinson, L. (2014). Ontological realism and classification: Structures and concepts in the gene ontology. Journal of the Association for Information Science and Technology, 65(4), 686–697.CrossRefGoogle Scholar
  23. Merriam-Webster. (n.d.). Definition of MORPHOGENETIC. Merriam-Webster Online Dictionary. Retrieved from
  24. Mingers, J. (1997). Systems typologies in the light of autopoiesis: A reconceptualization of Boulding’s hierarchy, and a typology of self-referential systems. Systems Research and Behavioral Science, 14(5), 303–313.CrossRefGoogle Scholar
  25. Mobus, G. E., & Kalton, M. C. (2014). Principles of systems science (2015th ed.). New York: Springer.Google Scholar
  26. Rousseau, D. (2011). Minds, souls and nature: A systems-philosophical analysis of the mind-body relationship in the light of near-death experiences (PhD thesis). University of Wales Trinity Saint David, Lampeter, Wales, UK.Google Scholar
  27. Rousseau, D., Billingham, J., Wilby, J. M., & Blachfellner, S. (2016). In search of general systems theory. Systema, Special Issue - General Systems Transdisciplinarity, 4(1), 76–92.Google Scholar
  28. Rousseau, D., Wilby, J. M., Billingham, J., & Blachfellner, S. (2016). A typology for the systems field. Systema, Special Issue - General Systems Transdisciplinarity, 4(1), 15–47.Google Scholar
  29. Simon, H. A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society, 106(6), 467–482.Google Scholar
  30. Troncale, L. R. (1978). Linkage propositions between fifty principal systems concepts. In G. J. Klir (Ed.), Applied general systems research (pp. 29–52). New York: Plenum Press.CrossRefGoogle Scholar
  31. Troncale, L. R. (1986). Knowing natural systems enables better design of man-made systems: The linkage proposition model. In R. Trappl (Ed.), Power, autonomy, utopia (pp. 43–80). New York: Plenum.CrossRefGoogle Scholar
  32. Troncale, L. R. (1988). The systems sciences: What are they? Are they one, or many? European Journal of Operational Research, 37(1), 8–33.CrossRefGoogle Scholar
  33. von Bertalanffy, L. (1932). Allgemeine Theorie, Physikochemie, Aufbau und Entwicklung des Organismus (Theoretische Biologie— Band I). Berlin: Gebrüder Borntraeger.Google Scholar
  34. von Bertalanffy, L. (1950). The theory of open systems in physics and biology. Science, 111(2872), 23–29.CrossRefGoogle Scholar
  35. Wilby, J. M. (2006). An essay on Kenneth E. Boulding’s general systems theory: The skeleton of science. Systems Research and Behavioral Science, 23(5), 695–699.CrossRefGoogle Scholar
  36. Yon Rhee, S., Wood, V., Dolinski, K., & Draghici, S. (2008). Use and misuse of the gene ontology annotations. Nature Reviews Genetics, 9(7), 509–515.CrossRefGoogle Scholar

Copyright information

© David Rousseau 2018

Authors and Affiliations

  • David Rousseau
    • 1
  • Jennifer Wilby
    • 2
  • Julie Billingham
    • 1
  • Stefan Blachfellner
    • 3
  1. 1.Centre for Systems PhilosophyAddlestoneUK
  2. 2.Centre for Systems Studies, University of HullKingston upon HullUK
  3. 3.Bertalanffy Center for the Study of Systems ScienceViennaAustria

Personalised recommendations