Abstract

Exploratory factor analysis (EFA) is a very popular statistical tool that is used throughout the social sciences. It has proven useful for assessing theories of learning, cognition, and personality (Aluja, García, & García, 2004), for exploring scale validity (Manos, Rachel C.; Kanter, Jonathan W.; Luo, Wen;), and for reducing the dimensionality in a set of variables so that they can be used more easily in further statistical analyses (Mashal & Kasirer, 2012).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aluja, A., García, Ó., & García, L. F. (2004). Replicability of the three, four and five Zuckerman’s personality super-factors: Exploratory and confirmatory factor analysis of the EPQ-RS, ZKPQ and NEO-PI-R. Personality and Individual Differences, 36(5), 1093–1108.CrossRefGoogle Scholar
  2. Asparouhov, T., & Muthén, B. (2009). Exploratory structural equation modeling. Structural Equation Modeling, 16, 397–438.CrossRefGoogle Scholar
  3. Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York: The Guilford Press.Google Scholar
  4. Browne, M. W. (2001). An overview of analytic rotations in exploratory factor analysis. Multivariate Behavioral Research, 36(1), 111–150.CrossRefGoogle Scholar
  5. Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245–276.CrossRefGoogle Scholar
  6. DiStefano, C., Zhu, M., & Mindrila, D. (2009). Understanding and using factor scores: Considerations for the applied researcher. Practical Assessment, Research & Evaluation, 14(20), Available online: http://pareonline.net/getvn.asp?v=14&n=20
  7. Finch, W. H. (in press). A comparison of factor rotation methods for dichotomous data. Journal of Modern Applied Statistical Methods.Google Scholar
  8. Finch, H. (2006). Comparison of the performance of Varimax and Promax rotations: Factor structure recovery for dichotomous items. Journal of Educational Measurement, 43(1), 39–52.CrossRefGoogle Scholar
  9. Finch, W. H., & French, B. F. (2012). The impact of factor noninvariance on observed composite score variances. International Journal of Research and Reviews in Applied Sciences, 1, 1–13.Google Scholar
  10. Gorsuch, R. L. (1983). Factor analysis. Hillsdale, NJ: Lawrence Erlbaum Associates Publishers.Google Scholar
  11. Grice, J. W. (2001). Computing and evaluating factor scores. Psychological Methods,6(4), 430–450.Google Scholar
  12. Guttman, L. (1958). Some necessary conditions for common factor analysis. Psychometrika, 19(2), 149–161.CrossRefGoogle Scholar
  13. Haig, B. D. (2005). Exploratory factor analysis, theory generation and the scientific method. Multivariate Behavioral Research, 40(3), 303–329.CrossRefGoogle Scholar
  14. Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179–185.CrossRefGoogle Scholar
  15. Jennrich, R. I. (2007). Rotation methods, algorithms, and standard errors. In R. Cudek & R. C. MacCallum (Eds.), Factor analysis at 100: Historical developments and future directions (pp. 315–335). Mahwah, NJ: Lawrence Erlbaum Associates, Publishers.Google Scholar
  16. Kaiser, H. F., & Caffrey, J. (1965). Alpha factor analysis. Psychometrika, 30(1), 1–14.CrossRefGoogle Scholar
  17. Lawley, D. N., & Maxwell, A. E. (1963). Factor analysis as a statistical method. London: Butterworth.Google Scholar
  18. Manos, R. C., Kanter, J. W., & Luo, W. (2011). The behavioral activation for depression scale–short form: Development and validation. Behavior Therapy, 42(4), 726–739.CrossRefGoogle Scholar
  19. Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57, 519–530.CrossRefGoogle Scholar
  20. Mashal, N., & Kasirer, A. (2012). Principal component analysis study of visual and verbal metaphoric comprehension in children with autism and learning disabilities. Research in Developmental Disabilities, 33(1), 274–282.CrossRefGoogle Scholar
  21. Mulaik, S. A. (2010). Foundations of factor analysis. Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
  22. Patil, V. H., McPherson, M. Q., & Friesner, D. (2010). The use of exploratory factor analysis in public health: A note on parallel analysis as a factor retention criterion. American Journal of Health Promotion, 24(3), 178–181.CrossRefGoogle Scholar
  23. Sass, D. A., & Schmitt, T. A. (2010). A comparative investigation of rotation criteria within exploratory factor analysis. Multivariate Behavioral Research, 45, 73–103.CrossRefGoogle Scholar
  24. Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics. Boston: Pearson.Google Scholar
  25. Thompson, B. (2004). Exploratory and confirmatory factor analysis: Understanding concepts and applications. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  26. Thurstone, L .L. (1947). Multiple factor analysis. Chicago: University of Chicago press.Google Scholar
  27. Velicer, W. F. (1976). Determining the number of components from the matrix of partial correlations. Psychometrika, 41, 321–327CrossRefGoogle Scholar
  28. Yates, A. (1987). Multivariate exploratory data analysis: A perspective on exploratory factor analysis. Albany: State University of New York Press.Google Scholar

Copyright information

© Sense Publishers 2013

Authors and Affiliations

  • W. Holmes finch

There are no affiliations available

Personalised recommendations