Advertisement

Analysis, Design and Implementation of an End-to-End QKD Link

  • Marina MondinEmail author
  • F. Daneshgaran
  • F. Di Stasio
  • S. Arnon
  • J. Kupferman
  • M. Genovese
  • I. Degiovanni
  • F. Piacentini
  • P. Traina
  • A. Meda
  • M. Gramegna
  • I. Bari
  • O. Khan
  • M. Khan
Conference paper
  • 32 Downloads
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

This manuscript discusses the most relevant aspects of the practical implementation of a long-range Quantum Key Distribution (QKD) link with trusted nodes, achieving the highest possible secret key rate generation within the security and system level constraints. To this purpose, we report on recent pilot studies for the measurements of detection efficiency and source photon statistics for validating the calibration facilities (i) at telecom wavelength for realistic quantum backbone implementation through standard telecommunications grade optical fiber, and (ii) for the telecom and VIS-NIR regime. In addition, since there are circumstances when a fiber optical link may not be available, we will also discuss the characterization of a Free Space Optics (FSO) QKD link. Finally, the manuscript also discusses the problem of information reconciliation in Continuous Variable QKD (CV-QKD) scenarios.

Keywords

Quantum key distribution Detection efficiency Free space optics Information reconciliation 

Notes

Acknowledgements

This research was supported by NATO under the SPS program, project “Analysis, design and implementation of an end-to-end 400 km QKD link”. This work received funds also from the projects EMPIR 14IND05 MIQC2, EMPIR 17FUN06 SIQUST, EMPIR 17FUN01 BECOME (the EMPIR initiative is co-funded by the European Union’s Horizon 2020 research and innovation program and the EMPIR Participating States).

References

  1. 1.
    Bennett C, Brassard G (1984) Quantum cryptography: public key distribution and coin tossing. In: Proceedings IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, India), pp 175–179.Google Scholar
  2. 2.
    Gisin N, Ribordy G, Tittel W, Zbinden H (2002) Quantum cryptography. Rev Mod Phys 74:145–195ADSCrossRefGoogle Scholar
  3. 3.
  4. 4.
    Gramegna M et al (2018) European coordinated metrological effort for quantum cryptography. In: Proceedings of the SPIE 10674, Quantum Technologies 2018, 106741K (21 May 2018).  https://doi.org/10.1117/12.2307841
  5. 5.
    Hadfield RH (2009) Nat Photonics 3:696–705ADSCrossRefGoogle Scholar
  6. 6.
    Stucki D et al (2001) J Mod Opt 48(13):1967–1981ADSCrossRefGoogle Scholar
  7. 7.
    Rebufello E et al (2019) Towards a standard procedure for the measurement of the multi-photon component in a CW telecom heralded single-photon source. Metrologia 56:025004ADSCrossRefGoogle Scholar
  8. 8.
    Reichert S (2019) Common ground. Nat Phys 15:110CrossRefGoogle Scholar
  9. 9.
    Moreva E et al (2019) Feasibility study towards comparison of the g(2)(0) measurement in the visible range. Metrologia 56:015016ADSCrossRefGoogle Scholar
  10. 10.
    Spinelli A, Lacaita AL (1997) Physics and numerical simulation of single photon avalanche diodes. IEEE Trans Electron DevGoogle Scholar
  11. 11.
    Meda A et al (2017) Quantifying backflash radiation to prevent zero-error attacks in quantum key distribution. Light Sci Appl Nat Group 6:e16261Google Scholar
  12. 12.
    Shi Y et al (2017) Breakdown flash at telecom wavelengths in InGaAs avalanche photodiodes. Opt Express 25(24):30388–30394ADSCrossRefGoogle Scholar
  13. 13.
    Pinheiro PVP et al (2018) Eavesdropping and countermeasures for backflash side channel in quantum cryptography. arXiv preprint arXiv:1804.10317Google Scholar
  14. 14.
    Lacaita A et al (1993) Photon-assisted avalanche spreading in reach-through photodiodes. Appl Phys Lett 62(6):606–608ADSCrossRefGoogle Scholar
  15. 15.
    Daneshgaran F, Mondin M, Olia K (2017) Permutation modulation for quantization and information reconciliation in CV-QKD systems. In: Proceedings of the SPIE, vol. 10409, id. 104090J 10 ppGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  • Marina Mondin
    • 1
    Email author
  • F. Daneshgaran
    • 1
  • F. Di Stasio
    • 1
  • S. Arnon
    • 2
  • J. Kupferman
    • 2
  • M. Genovese
    • 3
  • I. Degiovanni
    • 3
  • F. Piacentini
    • 3
  • P. Traina
    • 3
  • A. Meda
    • 3
  • M. Gramegna
    • 3
  • I. Bari
    • 4
  • O. Khan
    • 4
  • M. Khan
    • 4
  1. 1.California State University Los AngelesLos AngelesUSA
  2. 2.Ben Gurion University of the NegevBeer-ShevaIsrael
  3. 3.INRIMTorinoItaly
  4. 4.NUCESPeshawarPakistan

Personalised recommendations