Advertisement

Microelectronic 3D Imaging and Neuromorphic Recognition for Autonomous UAVs

  • Franco Zappa
  • Federica Villa
  • Rudi Lussana
  • Dennis Delic
  • Man Ching Joyce Mau
  • Jean-Michel RedoutéEmail author
  • Simon Kennedy
  • Daniel Morrison
  • Mehmet Yuce
  • Tuncay Alan
  • Tara Hamilton
  • Saeed Afshar
Conference paper
  • 21 Downloads
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

The article addresses the development of highly sensitive, low-light and efficient, miniature single-photon sensor technology based on Single Photon Avalanche Diode (SPAD) arrays, its integration on a Flash Light Detection and Ranging (LiDAR) system mounted on a custom built multi-rotor Unmanned Aerial System (UAS) platform, for the collection of real time imagery and performance of neuromorphic processing for accurate target detection and classification.

References

  1. 1.
    Afshar S, George L, Thakur CS, Tapson J, van Schaik A, de Chazal P, Hamilton TJ (2015) Turn down that noise: synaptic encoding of afferent SNR in a single spiking neuron. IEEE Trans Biomed Circuits Syst 9(2):188–196CrossRefGoogle Scholar
  2. 2.
    Afshar S, Hamilton TJ, Tapson J, van Schaik A, Cohen G (2019) Investigation of event-based surfaces for high-speed detection, unsupervised feature extraction, and object recognition. Front Neurosci 12:1047CrossRefGoogle Scholar
  3. 3.
    Mau J, Afshar S, Hamilton TJ, Schaik A, Lussana R, Panella A, Trumpf J, Delic D (2019) Embedded implementation of a random feature detecting network for real time classification of time-of-flight SPAD array recordings. In: SPIE defence + commercial sensing conferenceGoogle Scholar
  4. 4.
    Morrison D, Delic D, Yuce MR, Redouté J-M (2019) Multistage linear feedback shift register counters with reduced decoding logic in 130 nm CMOS for large scale array applications. IEEE Trans Very Large Scale Integr Syst 27(1):103–115CrossRefGoogle Scholar
  5. 5.
    Morrison D, Kennedy S, Delic D, Yuce MR, Redouté J-M (2018) A triple integration timing scheme for SPAD time of flight imaging sensors in 130 nm CMOS. In: Proceedings of IEEE international conference on electronics, circuits and systems, pp 13–16Google Scholar
  6. 6.
    Sofatzis RJ, Afshar S, Hamilton TJ (2014) The synaptic kernel adaptation network. In: IEEE international symposium on circuits and systems (ISCAS), pp 2077–2080Google Scholar
  7. 7.
    Villa F, Bronzi D, Zou Y, Scarcella C, Boso G, Tisa S, Tosi A, Zappa F, Durini D, Weyers S, Paschen U, Brockherde W (2014) CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm. J Mod Opt 61(2):102–115ADSCrossRefGoogle Scholar
  8. 8.
    Villa F, Lussana R, Bronzi D, Tisa S, Tosi A, Zappa F, Mora AD, Contini D, Durini D, Weyers S, Brockherde W (2014) CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight. IEEE J Sel Top Quantum Electron 20(6):364–373ADSCrossRefGoogle Scholar
  9. 9.
    Woods WF, Delic DV, Smith BW, Swierkowski L, Day GS, Devrelis V, Joyce RA (2019) Object detection and recognition using laser radar incorporating novel SPAD technology. In: Proceedings of SPIE 11005, laser radar technology and applications XXIV, vol 1100504Google Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  • Franco Zappa
    • 1
  • Federica Villa
    • 1
  • Rudi Lussana
    • 1
  • Dennis Delic
    • 2
  • Man Ching Joyce Mau
    • 2
  • Jean-Michel Redouté
    • 3
    Email author
  • Simon Kennedy
    • 4
  • Daniel Morrison
    • 4
  • Mehmet Yuce
    • 4
  • Tuncay Alan
    • 4
  • Tara Hamilton
    • 5
  • Saeed Afshar
    • 6
  1. 1.Politecnico di MilanoMilanItaly
  2. 2.Defence Science and Technology Group (DSTG)Department of DefenceEdinburghAustralia
  3. 3.University of LiègeLiègeBelgium
  4. 4.Monash UniversityMelbourneAustralia
  5. 5.Macquarie UniversitySydneyAustralia
  6. 6.University of Western SydneySydneyAustralia

Personalised recommendations