Advertisement

Compact Eye-Safe LIDAR Source for Airborne Laser Scanning – The CALIBER Project

  • Nadia G. BoettiEmail author
  • Amiel Ishaaya
  • Mircea Guina
  • Davide Janner
  • Daniel Milanese
  • Diego Pugliese
  • Antti Penttinen
  • Antti Härkönen
  • Omri Moschovitz
  • Yair Alon
  • Federico Leone
Conference paper
  • 24 Downloads
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

A high power, ultra-compact, lightweight, and low cost eye-safe laser source for a Light Detection and Ranging (LIDAR) system is currently under development in the framework of the NATO Science for Peace and Security project “CALIBER”, with the aim to be installed on small Unmanned Aerial Vehicles (UAVs) for surveillance of borders and sensitive areas, with saving in manpower and equipment.

Keywords

LIDAR Phosphate glass Microchip laser Glass amplifier Optical fiber 

References

  1. 1.
    Boetti NG, Pugliese D, Ceci-Ginistrelli E, Lousteau J, Janner D, Milanese D (2017) Highly doped phosphate glass fibers for compact lasers and amplifiers: a review. Appl Sci 7:1295CrossRefGoogle Scholar
  2. 2.
    Boetti NG, Scarpignato GC, Lousteau J, Pugliese D, Bastard L, Broquin J-E, Milanese D (2015) High concentration Yb-Er co-doped phosphate glass for optical fiber amplification. J Opt 17:065705ADSCrossRefGoogle Scholar
  3. 3.
    Budei BC, St-Onge B, Hopkinson C, Audet F-A (2018) Identifying the genus or species of individual trees using a three-wavelength airborne LIDAR system. Remote Sens Environ 204:632–647ADSCrossRefGoogle Scholar
  4. 4.
    Chen M, Rudd WJ, Hansell J, Pachowicz D, Litvinovitch S, Burns P, Sawruk NW (2019) Er:YAG methane LIDAR laser technology. In: Proceedings of the SPIE 11005, laser radar technology and applications XXIV, 110050QGoogle Scholar
  5. 5.
    Gorbachenya KN, Kisel VE, Yasukevich AS, Maltsev VV, Leonyuk NI, Kuleshov NV (2015) CW and Q-switched diode-pumped laser operation of Er,Yb:GdAl3(BO3)4 crystal. Advanced Solid State Lasers (ASSL) 2015, Berlin, Germany, paper ATu1A.5Google Scholar
  6. 6.
    Häring R, Paschotta R, Fluck R, Gini E, Melchior H, Keller U (2001) Passively Q-switched microchip laser at 1.5 μm. J Opt Soc Am B: Opt Phys 18:1805–1812ADSCrossRefGoogle Scholar
  7. 7.
  8. 8.
  9. 9.
    Jiang S, Mendes SB, Hu Y, Nunzi-Conti G, Chavez-Pirson A, Kaneda Y, Luo T, Chen Q, Hocde S, Nguyen DT, Wright EM, Wang J, Tian W, Nikolajsen T, Peyghambarian N (2003) Compact multimode pumped erbium-doped phosphate fiber amplifiers. Opt Eng 42:2817–2820ADSCrossRefGoogle Scholar
  10. 10.
    Lee Y-W, Sinha S, Digonnet MJF, Byer RL, Jiang S (2006) 20 W single-mode Yb3+-doped phosphate fiber laser. Opt Lett 31:3255–3257ADSCrossRefGoogle Scholar
  11. 11.
    McCarthy A, Ren X, Della Frera A, Gemmell NR, Krichel NJ, Scarcella C, Ruggeri A, Tosi A, Buller GS (2013) Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector. Opt Express 21:22098–22113ADSCrossRefGoogle Scholar
  12. 12.
    Overton G (2017) Lasers for LIDAR: application parameters dictate laser source selection in LIDAR systems, LaserFocusWorldGoogle Scholar
  13. 13.
    Pulikkaseril C, Lam S (2019) Laser eyes for driverless cars: the road to automotive LIDAR. Optical Fiber Communication Conference (OFC) 2019, San Diego, USA, paper Tu3D.2Google Scholar
  14. 14.
    Qiu T, Li L, Schülzgen A, Temyanko VL, Luo T, Jiang S, Mafi A, Moloney JV, Peyghambarian N (2004) Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers. IEEE Photon Technol Lett 16:2592–2594ADSCrossRefGoogle Scholar
  15. 15.
    Ren M, Gu X, Liang Y, Kong W, Wu E, Wu G, Zeng H (2011) Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector. Opt Express 19:13497–13502ADSCrossRefGoogle Scholar
  16. 16.
    Schmitt NP (2017) Research results, lessons learned and future perspective of forward-looking LIDAR for aircraft. 2017 Conference on Lasers and Electro-Optics (CLEO), San Jose, USA, pp 1–2Google Scholar
  17. 17.
    Spinhirne JD (1993) Micro pulse LIDAR. IEEE Trans Geosci Remote Sens 31:48–55ADSCrossRefGoogle Scholar
  18. 18.
    Spinhirne JD, Rall JAR, Scott VS (1995) Compact eye safe LIDAR systems. Rev Laser Eng 23:112–118CrossRefGoogle Scholar
  19. 19.
    Yamane M, Asahara Y (2004) Glasses for photonics. Cambridge University Press, CambridgeGoogle Scholar
  20. 20.
    Zayhowski JJ (2013) Microchip lasers. In: Denker B, Shklovsky E (eds) Handbook of solid-state lasers: materials, systems and applications. Woodhead Publishing, Cambridge, pp 359–402CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  • Nadia G. Boetti
    • 1
    Email author
  • Amiel Ishaaya
    • 2
  • Mircea Guina
    • 3
  • Davide Janner
    • 4
  • Daniel Milanese
    • 5
  • Diego Pugliese
    • 4
  • Antti Penttinen
    • 3
  • Antti Härkönen
    • 3
  • Omri Moschovitz
    • 2
  • Yair Alon
    • 2
  • Federico Leone
    • 1
  1. 1.LINKS Foundation – Leading Innovation and Knowledge for SocietyTorinoItaly
  2. 2.School of Electrical and Computer EngineeringBen-Gurion University of NegevBeer-ShevaIsrael
  3. 3.Optoelectronics Research CentreTampere UniversityTampereFinland
  4. 4.Politecnico di Torino – DISAT and RU INSTMTorinoItaly
  5. 5.Università di Parma – DIA and RU INSTMParmaItaly

Personalised recommendations