Advertisement

Antiferromagnetic-to-Ferromagnetic Transition in FeRh Thin Films with Strain Induced Nanostructure

  • R. Witte
  • R. Kruk
  • D. Wang
  • R. A. Brand
  • H. HahnEmail author
Conference paper
  • 39 Downloads
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

The formation of a magnetic nanostructure is reported in FeRh thin films showing the antiferromagnetic-to-ferromagnetic (AF-to-FM) transition known from the B2 ordered equiatomic phase. The magnetic nanostructure is formed due to a certain epitaxial strain-adaption process, leading to phase separation into a ferromagnetic and a paramagnetic phase. An additional post-annealing step finally creates the high degree of chemical ordering in the cubic phase needed to establish the AFM ground state and the AF-to-FM transition, as seen by SQUID magnetometry and 57Fe conversion electron Mössbauer spectroscopy.

Keywords

FeRh Magnetic nanostructures Conversion electron Mössbauer spectroscopy (CEMS) Epitaxial strain 

References

  1. 1.
    Fallot M (1938) Ann Phys 10:291CrossRefGoogle Scholar
  2. 2.
    Fallot M, Horcart R (1939) Rev Sci 77:498Google Scholar
  3. 3.
    Walter PHL (1964) J Appl Phys 35:938ADSCrossRefGoogle Scholar
  4. 4.
    Kouvel JS (1966) J Appl Phys 37:1257ADSCrossRefGoogle Scholar
  5. 5.
    Barua R, Jiménez-Villacorta F, Lewis LH (2013) Appl Phys Lett 103:102407ADSCrossRefGoogle Scholar
  6. 6.
    McKinnon JB, Melville D, Lee EW (1970) J Phys C Solid State Phys 3:S46ADSCrossRefGoogle Scholar
  7. 7.
    Maat S, Thiele J-U, Fullerton EE (2005) Phys Rev B 72:214432ADSCrossRefGoogle Scholar
  8. 8.
    Ohtake K, Mitsui Y, Takahashi K, Onodera R, Kimura S, Watanabe K, Koyama K (2014) IEEE Trans Magn 50:1001404Google Scholar
  9. 9.
    Cherifi RO, Ivanovskaya V, Phillips LC, Zobelli A, Infante IC, Jacquet E, Garcia V, Fusil S, Briddon PR, Guiblin N, Mougin A, Ünal AA, Kronast F, Valencia S, Dkhil B, Barthélémy A, Bibes M (2014) Nat Mater 13:345ADSCrossRefGoogle Scholar
  10. 10.
    Fina I, Quintana A, Padilla-Pantoja J, Marti X, Macià F, Sanchez F, Foerster M, Aballe L, Fontcuberta J, Sort J (2017) ACS Appl Mater Interfaces 9(18):15577–15582CrossRefGoogle Scholar
  11. 11.
    Wayne R (1968) Phys Rev 170:523ADSCrossRefGoogle Scholar
  12. 12.
    Kamenev K, Arnold Z, Kamarád J, Baranov NV (1997) J Alloys Compd 252:1CrossRefGoogle Scholar
  13. 13.
    Stern-Taulats E, Planes A, Lloveras P, Barrio M, Tamarit J-L, Pramanick S, Majumdar S, Frontera C, Mañosa L (2014) Phys Rev B 89:214105ADSCrossRefGoogle Scholar
  14. 14.
    Liu J, Gottschall T, Skokov KP, Moore JD, Gutfleisch O (2012) Nat Mater 11:620ADSCrossRefGoogle Scholar
  15. 15.
    Liu Y, Phillips LC, Mattana R, Bibes M, Barthélémy A, Dkhil B (2016) Nat Commun 7:11614ADSCrossRefGoogle Scholar
  16. 16.
    Marti X, Fina I, Frontera C, Liu J, Wadley P, He Q, Paull RJ, Clarkson JD, Kudrnovský J, Turek I, Kuneš J, Yi D, Chu J-H, Nelson CT, You L, Arenholz E, Salahuddin S, Fontcuberta J, Jungwirth T, Ramesh R (2014) Nat Mater 13:367ADSCrossRefGoogle Scholar
  17. 17.
    Moriyama T, Matsuzaki N, Kim K-J, Suzuki I, Taniyama T, Ono T (2015) Appl Phys Lett 107:122403ADSCrossRefGoogle Scholar
  18. 18.
    Barua R, Jiang X, Jimenez-Villacorta F, Shield JE, Heiman D, Lewis LH (2013) J Appl Phys 113:23910CrossRefGoogle Scholar
  19. 19.
    Kaeswurm B, Jimenez-Villacorta F, Bennett SP, Heiman D, Lewis LH (2014) J Magn Magn Mater 354:284ADSCrossRefGoogle Scholar
  20. 20.
    Ayoub JP, Gatel C, Roucau C, Casanove MJ (2011) J Cryst Growth 314:336ADSCrossRefGoogle Scholar
  21. 21.
    Loving M, Jimenez-Villacorta F, Kaeswurm B, Arena DA, Marrows CH, Lewis LH (2013) J Phys D Appl Phys 46:162002ADSCrossRefGoogle Scholar
  22. 22.
    Dupuis V, Robert A, Hillion A, Khadra G, Blanc N, Le Roy D, Tournus F, Albin C, Boisron O, Tamion A (2016) Beilstein J Nanotechnol 7:1850CrossRefGoogle Scholar
  23. 23.
    Ko HYY, Suzuki T, Phuoc NN, Cao J (2008) J Appl Phys 103:07D508CrossRefGoogle Scholar
  24. 24.
    Kauffmann-Weiss S, Gruner ME, Backen A, Schultz L, Entel P, Fähler S (2011) Phys Rev Lett 107:206105ADSCrossRefGoogle Scholar
  25. 25.
    Witte R, Kruk R, Gruner ME, Brand RA, Wang D, Schlabach S, Beck A, Provenzano V, Pentcheva R, Wende H, Hahn H (2016) Phys Rev B 93:104416ADSCrossRefGoogle Scholar
  26. 26.
    Witte R, Kruk R, Molinari A, Wang D, Schlabach S, Brand RA, Provenzano V, Hahn H (2017) J Phys D Appl Phys 50:25007CrossRefGoogle Scholar
  27. 27.
    Staunton JB, Banerjee R, Dias M d S, Deak A, Szunyogh L (2014) Phys Rev B 89(54427)Google Scholar
  28. 28.
    Kudrnovský J, Drchal V, Turek I (2015) Phys Rev B 91:14435ADSCrossRefGoogle Scholar
  29. 29.
    Witte R (2016) Strain Adaption in Epitaxial Fe-Rh Nanostructures, Dissertation, Technische Universität DarmstadtGoogle Scholar
  30. 30.
    Thiele J-U, Maat S, Fullerton EE (2003) Appl Phys Lett 82:2859ADSCrossRefGoogle Scholar
  31. 31.
    Jia Z, Misra RDK (2011) Mater Technol 26:200CrossRefGoogle Scholar
  32. 32.
    Lounis L, Spezzani C, Delaunay R, Fortuna F, Obstbaum M, Günther S, Back CH, Popescu H, Vidal F, Sacchi M (2016) J Phys D Appl Phys 49:205003ADSCrossRefGoogle Scholar
  33. 33.
    Orna J, Morellón L, Algarabel PA, De Teresa JM, Fernández-Pacheco A, Simón G, Magen C, Pardo JA, Ibarra MR (2010) Adv Sci Technol 67:82CrossRefGoogle Scholar
  34. 34.
    Gütlich P, Bill E, Trautwein AX (2011) Mössbauer spectroscopy and transition metal chemistry. Springer Berlin Heidelberg, BerlinCrossRefGoogle Scholar
  35. 35.
    Bordel C, Juraszek J, Cooke DW, Baldasseroni C, Mankovsky S, Minár J, Ebert H, Moyerman S, Fullerton EE, Hellman F (2012) Phys Rev Lett 109:117201ADSCrossRefGoogle Scholar
  36. 36.
    Barua R, McDonald I, Jiménez-Villacorta F, Heiman D, Lewis LH (2016) J Alloys Compd 689:1044CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  • R. Witte
    • 1
  • R. Kruk
    • 1
  • D. Wang
    • 1
    • 2
  • R. A. Brand
    • 1
    • 3
  • H. Hahn
    • 1
    • 4
    Email author
  1. 1.Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany
  2. 2.Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  3. 3.Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE)University Duisburg-EssenDuisburgGermany
  4. 4.KIT-TUD Joint Research Laboratory NanomaterialsInstitute of Materials Science, TU DarmstadtDarmstadtGermany

Personalised recommendations