Processing of Superconducting and Thermoelectric Bulk Materials Via Laser Technologies

  • Bekir ÖzçelikEmail author
  • G. Çetin
  • M. Gürsul
  • M. A. Torres
  • M. A. Madre
  • A. Sotelo
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)


As it is well-known bulk high temperature superconductors are used in technological high power applications, as for instance, superconducting fault current limiters or current leads. Due to their intrinsic granularity and anisotropy issues, the superconducting properties of these materials are strongly determined by current percolation problems. This depends on several factors as the characteristics and properties of individual grains and the quality of the grain boundaries. Thermoelectric (TE) harvesting of wasted heat should play an important role in a sustainable future, due to its simplicity, scalability, and self-sustainability in all kind of applications: remote/attended or mobile/static ones. The development of oxide-based TE materials is important when considering that they are cheaper, and possess lower toxicity than the traditional ones. Moreover, oxides can be used at high temperatures without protecting atmospheres, opening new opportunities for energy recovering TE devices. On the other hand, it is desirable to tune up their TE performances before integration in practical applications. In consequence, in order to obtain bulk materials for the technological applications, it is necessary to develop fabrication techniques controlling the microstructure and shape materials. Recently, in order to fabricate the bulk high temperature superconductors and thermoelectrics with high physical properties, the laser technologies have been widely used. In these techniques, the anisotropy arising from the solidification process permits to aligning the grains within the textured bulk material. For this purpose, superconducting Bi2Sr2-xNaxCaCu2Ox and thermoelectric Bi2Sr2-xNaxCo2Ox samples were prepared and textured using the laser floating zone (LFZ) technique. Microstructural analysis of as-grown samples showed well oriented grains and a relatively high amount of secondary phases due to their incongruent melting. Annealing procedure has drastically decreased the number and amount of secondary phases. Moreover, Na-doping has further decreased the secondary phase content and improved grain alignment.


Ceramics Oxides Superconductors Thermoelectrics Laser processing Electrical properties Critical temperature Critical current density Seebeck coefficient Power factor 


  1. 1.
    Hsu AJ, Chang KS (2019) Physical, photochemical, and extended piezoelectric studies of orthorhombic ZnSnN2 nanocolumn arrays. Appl Surface Sci 470:19ADSCrossRefGoogle Scholar
  2. 2.
    Li JH, Xu SD, Deng Z, Wei LL, Yang ZP (2019) Photoluminescence and ferroelectric behaviors related to Sr/Ba ratioin Eu3+ doped (Srx Ba1-x)0.98Eu0.02Nb2O6 multifunctional tungsten bronze ceramics. J Alloys Compds 780:355CrossRefGoogle Scholar
  3. 3.
    Bonura M, Barth C, Senatore C (2019) Electrical and thermo-physical properties of Ni-alloy Reinforced Bi-2223 Conductors. IEEE Trans Appl Supercond 29:6400205Google Scholar
  4. 4.
    Chen C, Delorme F, Schoenstein F, Zaghrioui M, Flahaut D, Allouche J, Giovannelli F (2019) Synthesis, sintering, and thermoelectric properties of Co1-x MxO (M = Na, 0 ≤ x ≤ 0.07; M = Ag, 0 ≤ x ≤ 0.05). J Eur Ceram Soc 39:346CrossRefGoogle Scholar
  5. 5.
    Michel C, Hervieu M, Borel MM, Grandin A, Deslandes F, Provost J, Raveau B (1987) Superconductivity in the Bi-Sr-Cu-O system. Z Phys B 86:421ADSCrossRefGoogle Scholar
  6. 6.
    Maeda H, Tanaka Y, Fukutumi M, Asano T (1988) A new high-Tc oxide superconductor without a rare-earth element. Jpn J Appl Phys 27:209ADSCrossRefGoogle Scholar
  7. 7.
    Majewski P, Su HL, Quilitz M (1997) Relationships between the chemical composition and properties of the high-temperature superconductor Bi2+xSr2-yCa1+y Cu2O8+d. J Mater Sci 32:5137ADSCrossRefGoogle Scholar
  8. 8.
    Chen L, Zhang XY, Qin YJ, Chen HK, Shen Q, Xu Y, Ren L, Tang YJ (2019) Application and design of a resistive-type superconducting fault current limiter for efficient protection of a DC microgrid. IEEE Trans Appl Supercond 29:5600607Google Scholar
  9. 9.
    Heller R, Bau H, Nagel M, Rummel T (2019) Operation experience of the Wendelstein 7-X high-temperature superconductor current leads. IEEE Trans Appl Supercond 29:4200105Google Scholar
  10. 10.
    Sotelo A, Rasekh S, Amaveda H, Bosque P, Torres MA, Madre MA, Diez JC (2015) Textured Pb-doped Bi-2212 superconductors for current limiters. J Supercond Nov Magn 28:447CrossRefGoogle Scholar
  11. 11.
    Costa FM, Ferreira NM, Rasekh S, Fernandes AJS, Torres MA, Madre MA, Diez JC, Sotelo A (2015) Very large superconducting currents induced by growth tailoring. Cryst Growth Des 15:2094CrossRefGoogle Scholar
  12. 12.
    Nane O, Özçelik B, Amaveda H, Sotelo A, Madre MA (2016) Improvement of structural and superconducting properties of Bi-2212 textured rods by substituting sodium. Ceram Int 42:8473CrossRefGoogle Scholar
  13. 13.
    Sotelo A, Ozcelik B, Amaveda H, Bruned A, Madre MA (2015) Fabrication and evolution of nanoprecursors to produce Bi(Pb)-2212/Ag textured superconducting Composites. Ceram Int 41:14276CrossRefGoogle Scholar
  14. 14.
    Mahan G, Sales B, Sharp J (1997) Thermoelectric materials: new approaches to an old problem. J Phys Today 50:42CrossRefGoogle Scholar
  15. 15.
    Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321:1457ADSCrossRefGoogle Scholar
  16. 16.
    Naito H, Kohsaka Y, Cooke D, Arashi H (1996) Development of a solar receiver for a high-efficiency thermionic/thermoelectric conversion system. Sol Energy 58:191ADSCrossRefGoogle Scholar
  17. 17.
    Kim CM, Hwang YJ, Ryu YH (2002) Air conditioner for individual cooling/heating. US Patent US6393842, MayGoogle Scholar
  18. 18.
    Elsheikh MH, Shnawah DA, Sabri MFM, Said SBM, Hassan MH, Renew MBABMM (2014) A review on thermoelectric renewable energy: principles parameters that affect their performance. Sust Energ Rev 30:337CrossRefGoogle Scholar
  19. 19.
    Rowe DM (2006) Thermoelectrics handbook: macro to nano, 1st edn. CRC Press, Boca RatonGoogle Scholar
  20. 20.
    JM S, Alkorta J, JG S (2013) Mechanical properties of bismuth telluride (Bi2Te3) processed by high pressure torsion (HPT). Bol Soc Esp Ceram V 52:137–142CrossRefGoogle Scholar
  21. 21.
    Wang HC, Bahk JH, Kang C, Hwang J, Kim K, Kim J, Burke P, Bowers JE, Gossard AC, Shakouri A, Kim W (2014) Right sizes of nano- and microstructures for high-performance and rigid bulk thermoelectric. P Natl Acad Sci USA 111:10949ADSCrossRefGoogle Scholar
  22. 22.
    Wang HC, Hwang J, Snedaker ML, Kim I-H, Kang C, Kim J, Stucky GD, Bowers J, Kim W (2015) High thermoelectric performance of a heterogeneous PbTe Nanocomposite. Chem Mater 27:944CrossRefGoogle Scholar
  23. 23.
    Terasaki I, Sasago Y, Uchinokura K (1997) Large thermoelectric power in NaCo2O4 single crystals. Phys Rev B 56:12685ADSCrossRefGoogle Scholar
  24. 24.
    Abdellahi M, Bahmanpour M, Bahmanpour M (2015) Modeling Seebeck coefficient of Ca3-xMxCo4O9 (M=Sr, Pr, Ga, Ca, Ba, La, Ag) thermoelectric ceramics. Ceram Int 41:345CrossRefGoogle Scholar
  25. 25.
    Li F, Li JF, Li JH, Yao FZ (2012) The effect of Cu substitution on microstructure and thermoelectric properties of LaCoO3 ceramics. Phys Chem Chem Phys 14:12213CrossRefGoogle Scholar
  26. 26.
    Rubesova K, Hlasek T, Jakes V, Huber S, Hejtmanek J, Sedmidubsky D (2015) Effect of a powder compaction process on the thermoelectric properties of Bi2Sr2Co1.8Ox ceramics. J Eur Ceram Soc 35:525CrossRefGoogle Scholar
  27. 27.
    Constantinescu G, Rasekh S, Torres MA, Madre MA, Diez JC, Sotelo A (2013) Enhancement of the high-temperature thermoelectric performance of Bi2Ba2Co2Ox ceramics. Scr Mater 68:75CrossRefGoogle Scholar
  28. 28.
    Wang H, Wang CL (2013) Thermoelectric properties of Yb-doped La0.1 Sr0.9 TiO3 ceramics at high temperature. Ceram Int 39:941CrossRefGoogle Scholar
  29. 29.
    Zhu YH, Su WB, Liu J, Zhou YC, Li J, Zhang X, Du Y, Wang CL (2015) Effects of Dy and Yb co-doping on thermoelectric properties of CaMnO3 ceramics. Ceram Int 41:1535CrossRefGoogle Scholar
  30. 30.
    Itahara H, Xia C, Sugiyama J, Tani T (2004) Fabrication of textured thermoelectric layered cobaltites with various rock salt-type layers by using β-Co(OH)2 platelets as reactive templates. J Mater Chem 14:61CrossRefGoogle Scholar
  31. 31.
    Özçelik B, Özkurt B, Yakinci ME, Sotelo A, Madre MA (2013) Relationship between annealing time and magnetic properties in Bi-2212 textured composites. J Supercond Nov Magn 26:873CrossRefGoogle Scholar
  32. 32.
    Özçelik B, Nane O, Sotelo A, Madre MA (2016) Effect of Yttrium substitution on superconductivity in Bi-2212 textured rods prepared by a LFZ technique. Ceram Int 42:3418CrossRefGoogle Scholar
  33. 33.
    Angurel LA, Díez JC, de la Fuente GF, Gimeno F, Lera F, López-Gascón C, Martínez E, Mora M, Navarro R, Sotelo A, Andrés N, Recuero S, Arroyo MP (2006) Laser technologies applied to the fabrication and characterization of bulk Bi-2212 superconducting materials for power applications. Phys Stat Sol A 203:2931ADSCrossRefGoogle Scholar
  34. 34.
    Sotelo A, Mora M, Madre MA, Amaveda H, Diez JC, Angurel LA, Mayoral MC (2006) Study of the variation of the E-I curves in the superconducting to normal transition of Bi-2212 textured ceramics by Pb addition. Bol Soc Esp Ceram 45:228CrossRefGoogle Scholar
  35. 35.
    Özçelik B, Gürsul M, Sotelo A, Madre MA (2014) Effect of K substitution on structural, electrical and magnetic properties of Bi-2212 system. J Mater Sci Mater Electron 25:4476CrossRefGoogle Scholar
  36. 36.
    Eisaki H, Kaneko N, Feng DL, Damascelli A, Mang PK, Shen KM, Shen ZX, Greven M (2004) Effect of chemical inhomogeneity in bismuth-based copper oxide superconductors. Phys Rev B 69:064512ADSCrossRefGoogle Scholar
  37. 37.
    Özkurt B, Ekicibil A, Ali Aksan M, Özçelik B, Yakıncı ME, Kiymaç K (2007) Structural and Physical Properties of Nd substituted bismuth cuprates Bi1.7Pb0.3-x NdxSr2Ca3Cu4O12+y. J Low Temp Phys 149:105ADSCrossRefGoogle Scholar
  38. 38.
    Bean CP (1962) Magnetization of hard superconductors. Phys Rev Lett 8:250ADSzbMATHCrossRefGoogle Scholar
  39. 39.
    Sotelo A, Torres MA, Constantinescu G, Rasekh S, Diez JC, Madre MA (2012) Effect of Ag addition on the mechanical and thermoelectric performances of annealed Bi2Sr2Co1.8Ox textured ceramics. J Eur Ceram Soc 32:3745CrossRefGoogle Scholar
  40. 40.
    Mercurio D, Champarnaud-Mesjard JC, Frit B, Conflant P, Boivin JC, Vogt T (1994) Thermal evolution of the crystal structure of the rhombohedral Bi0.75Sr0.25 O1.375 phase: a single crystal neutron diffraction study. J Solid State Chem 112(1):1–8ADSCrossRefGoogle Scholar
  41. 41.
    Costa FM, Ferreira NM, Rasekh S, Fernandes AJS, Torres MA, Madre MA, Diez JC, Sotelo A (2015) Very large superconducting currents induced by growth tailoring. Cryst Growth Des 15:2094CrossRefGoogle Scholar
  42. 42.
    Rasekh S, Ferreira NM, Costa FM, Constantinescu G, Madre MA, Torres MA, Diez JC, Sotelo A (2014) Development of a new thermoelectric Bi2Ca2Co1.7Ox + Ca3Co4O9 composite. Scr Mater 80:1CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  • Bekir Özçelik
    • 1
    Email author
  • G. Çetin
    • 1
  • M. Gürsul
    • 1
  • M. A. Torres
    • 2
  • M. A. Madre
    • 2
  • A. Sotelo
    • 2
  1. 1.Department of PhysicsCukurova UniversityAdanaTurkey
  2. 2.ICMA (CSIC-Universidad de Zaragoza)ZaragozaSpain

Personalised recommendations