Advertisement

Vector, Tensors, and Related Matters

  • Ciprian D. ComanEmail author
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 238)

Abstract

All mathematical models of Continuum Mechanics are described by using vectorial and tensorial quantities. For this reason, a certain fluency in vector and tensor manipulations is imperative for much of the rest of the book. The purpose of the current chapter is largely twofold. While the first few sections can serve as a brief review of several key topics in Linear Algebra, for the most part the attention will be directed towards the concept of second-order tensor and its higher order generalisations. The last couple of sections indicate how the usual vector calculus can be extended to tensor fields and functions whose arguments are tensors.

Bibliography

  1. 1.
    Dodson CTJ, Poston T (1991) Tensor geometry. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Farin G, Hansford D (2005) Practical linear algebra: a geometry toolbox. A K Peters, Wellesley, MAzbMATHGoogle Scholar
  3. 3.
    Schneider PJ, Eberly DH (2003) Geometric tools for computer graphics. Morgan Kaufmann Publishers, AmsterdamGoogle Scholar
  4. 4.
    Noll W (1987) Finite-dimensional spaces. Martinus Nijhoff Publishers, DordrechtCrossRefGoogle Scholar
  5. 5.
    Jost J (1998) Postmodern analysis. Springer, New YorkCrossRefGoogle Scholar
  6. 6.
    Lang S (1997) Undergraduate analysis, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  7. 7.
    Akivis MA, Goldberg VV (1977) An introduction to linear algebra and tensors. Dover Publications Inc, New YorkGoogle Scholar
  8. 8.
    Block HD (1978) Introduction to tensor analysis. Charles E. Merrill Books Inc, Columbus, OhioGoogle Scholar
  9. 9.
    Borisenko AI, Tarapov IE (1979) Vector and tensor analysis. Dover Publications Inc, New YorkGoogle Scholar
  10. 10.
    Chen HC (1985) Theory of electromagnetic waves: a coordinate-free approach. McGraw-Hill Book Company, New YorkGoogle Scholar
  11. 11.
    Chou PC, Pagano NJ (1967) Elasticity: tensor, dyadic, and engineering approaches. D. Van Nostrand Company Inc, Princeton, New JerseyGoogle Scholar
  12. 12.
    Curtis CW (1984) Linear algebra: an introductory approach. Springer, New YorkGoogle Scholar
  13. 13.
    Danielson DA (1997) Vectors and tensors in engineering and physics, 2nd edn. Addison-Wesley, Reading, MassachusettsGoogle Scholar
  14. 14.
    Drew TB (1961) Handbook of vector and polyadic analysis. Reinhold Publishing Corporation, New YorkGoogle Scholar
  15. 15.
    Gibbs JW, Wilson EB (1901) Vector analysis. Yale University Press, New Haven, ConnecticutGoogle Scholar
  16. 16.
    Gurtin ME (1981) An introduction to continuum mechanics. Academic Press, New YorkGoogle Scholar
  17. 17.
    Halmos P (1987) Finite-dimensional spaces. Springer, BerlinGoogle Scholar
  18. 18.
    Hjelmstad KD (1997) Fundamentals of structural mechanics. Prentice-Hall Inc, Upper Saddle River, New JerseyGoogle Scholar
  19. 19.
    Soos E, Beju I, Teodorescu PP (1983) Euclidean tensor calculus with applications. Abacus Press, Tunbridge Wells, Kent (UK)Google Scholar
  20. 20.
    Lewis PE, Ward PJ (1989) Vector analysis for engineers and scientists. Addison-Wesley, Wokingham (UK)Google Scholar
  21. 21.
    Lichnerowicz A (1962) Elements of tensor calculus. Methuen & Co, Ltd., LondonGoogle Scholar
  22. 22.
    Lohr E (1950) Vektor- und Dyadenrechnung für Physiker und Techniker, 2nd edn. Walter de Gruyter & Co, Berlin (in German)Google Scholar
  23. 23.
    Lurie AI (2005) Theory of elasticity. Springer, BerlinGoogle Scholar
  24. 24.
    Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Prentice-Hall Inc, Englewood Cliffs, New JerseyGoogle Scholar
  25. 25.
    Meyer CD (2000) Matrix analysis and applied linear algebra. SIAM (Society for Industrial and Applied Mathematics), PhiladelphiaGoogle Scholar
  26. 26.
    Nadeau G (1964) Introduction to elasticity. Holt, Rinehart and Winston Inc, New YorkGoogle Scholar
  27. 27.
    Pach K, Frey T (1964) Vector and tensor analysis. Terra, Budapest, HungaryGoogle Scholar
  28. 28.
    Podio-Guidugli P (2000) A primer in elasticity. Kluwer Academic Publishers, Dordercht, The NetherlandsCrossRefGoogle Scholar
  29. 29.
    Schumann W, Dubas M (1979) Holographic interferometry. Springer, BerlinCrossRefGoogle Scholar
  30. 30.
    Schumann W, Zürcher J-P, Cuche D (1985) Holography and deformation analysis. Springer, BerlinGoogle Scholar
  31. 31.
    Simmonds JG (1995) A brief on tensor analysis, 2nd edn. Springer, New YorkGoogle Scholar
  32. 32.
    Weatherburn CE (1960) Advanced vector analysis. G. Bell and Sons Ltd., LondonGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.School of Computing and EngineeringUniversity of HuddersfieldHuddersfieldUK

Personalised recommendations