Advertisement

Prospects for Terahertz Imaging the Human Skin Cancer with the Help of Gold-Nanoparticles-Based Terahertz-to-Infrared Converter

  • A. V. PostnikovEmail author
  • K. A. Moldosanov
  • N. J. Kairyev
  • V. M. Lelevkin
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

The design is suggested, and possible operation parameters are discussed, of an instrument to inspect a skin cancer tumour in the terahertz (THz) range, transferring the image into the infrared (IR) and making it visible with the help of standard IR camera. The central element of the device is the THz-to-IR converter, a Teflon® or silicon film matrix with embedded 8.5 nm diameter gold nanoparticles. The use of external THz source for irradiating the biological tissue sample is presumed. The converter’s temporal characteristics enable its performance in a real-time scale. The details of design suited for the operation in transmission mode (in vitro) or on the human skin in reflection mode (in vivo) are specified.

References

  1. 1.
  2. 2.
    Ross KFA, Gordon RE (1982) J Microsc 128(1):7. https://doi.org/10.1111/j.1365-2818.1982.tb00433.x CrossRefGoogle Scholar
  3. 3.
    Chen JH, Avram HE, Crooks LE, Arakawa M, Kaufman L, Brito AC (1992) Radiology 184(2):427. PMID: 1620841.  https://doi.org/10.1148/radiology.184.2.1620841 CrossRefGoogle Scholar
  4. 4.
    Berry E, Walker GC, Fitzgerald AJ, Zinov’ev NN, Chamberlain M, Smye SW, Miles RE, Smith MA (2003) J Laser Appl 15(3):192. https://doi.org/10.2351/1.1585079. http://scitation.aip.org/content/lia/journal/jla/15/3/10.2351/1.1585079 CrossRefADSGoogle Scholar
  5. 5.
    Rønne C, Thrane L, Åstrand PO, Wallqvist A, Mikkelsen KV, Keiding SR (1997) J Chem Phys 107(14):5319. https://doi.org/10.1063/1.474242. http://scitation.aip.org/content/aip/journal/jcp/107/14/10.1063/1.474242 CrossRefADSGoogle Scholar
  6. 6.
    Son JH (2009) J Appl Phys 105(10):102033. https://doi.org/10.1063/1.3116140 CrossRefADSGoogle Scholar
  7. 7.
    Oh SJ, Maeng I, Shin HJ, Lee J, Kang J, Haam S, Huh YM, Suck Suh J, Hiuk Son J (2008) In: 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves, pp 1–2.  https://doi.org/10.1109/ICIMW.2008.4665813
  8. 8.
    Oh SJ, Kang J, Maeng I, Suh JS, Huh YM, Haam S, Son JH (2009) Opt Express 17(5):3469. https://doi.org/10.1364/OE.17.003469. http://www.opticsexpress.org/abstract.cfm?URI=oe-17-5-3469 CrossRefADSGoogle Scholar
  9. 9.
    Oh SJ, Choi J, Maeng I, Suh JS, Huh YM, Haam S, Son JH (2010) In: 2010 IEEE Photonics Society Winter Topicals Meeting Series (WTM), p 52.  https://doi.org/10.1109/PHOTWTM.2010.5421967
  10. 10.
    Oh SJ, Choi J, Maeng I, Park JY, Lee K, Huh YM, Suh JS, Haam S, Son JH (2011) Opt Express 19(5):4009. https://doi.org/10.1364/OE.19.004009. http://www.opticsexpress.org/abstract.cfm?URI=oe-19-5-4009 CrossRefADSGoogle Scholar
  11. 11.
    Oh SJ, Huh YM, Suh JS, Choi J, Haam S, Son JH (2012) J Infrared Millimeter Terahertz Waves 33(1):74. https://doi.org/10.1007/s10762-011-9847-9.CrossRefGoogle Scholar
  12. 12.
    Loo C, Lowery A, Halas N, West J, Drezek R (2005) Nano Lett 5(4):709. https://doi.org/10.1021/nl050127s CrossRefADSGoogle Scholar
  13. 13.
  14. 14.
    Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) J Am Chem Soc 128(6):2115. https://doi.org/10.1021/ja057254a CrossRefGoogle Scholar
  15. 15.
    Woodward RM, Wallace VP, Cole BE, Pye RJ, Arnone DD, Linfield EH, Pepper M (2002a) In: Proceedings of the SPIE 4625, Clinical Diagnostic Systems: Technologies and Instrumentation, p 160. https://doi.org/10.1117/12.469785 Google Scholar
  16. 16.
    Woodward RM, Cole BE, Wallace VP, Pye RJ, Arnone DD, Linfield EH, Pepper M (2002b) Phys Med Biol 47(21):3853. http://stacks.iop.org/0031-9155/47/i=21/a=325 CrossRefGoogle Scholar
  17. 17.
    Woodward RM, Wallace VP, Pye RJ, Cole BE, Arnone DD, Linfield EH, Pepper M (2003) J Invest Dermatol 120(1):72. https://doi.org/10.1046/j.1523-1747.2003.12013.x CrossRefGoogle Scholar
  18. 18.
    Wallace VP, Fitzgerald AJ, Shankar S, Flanagan N, Pye R, Cluff J, Arnone DD (2004) Br J Dermatol 151(2):424. https://doi.org/10.1111/j.1365-2133.2004.06129.x. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2133.2004.06129.x CrossRefGoogle Scholar
  19. 19.
    Wallace VP, Fitzgerald AJ, Pickwell E, Pye RJ, Taday PF, Flanagan N, Ha T (2006) Appl Spectrosc 60(10):1127. https://doi.org/10.1366/000370206778664635 CrossRefADSGoogle Scholar
  20. 20.
    Pickwell E, Wallace VP (2006) J Phys D Appl Phys 39(17):R301. http://stacks.iop.org/0022-3727/39/i=17/a=R01 CrossRefADSGoogle Scholar
  21. 21.
    Infrared Cameras Inc. (2018) Mirage 640 P-series | fixed/process control calibrated thermal camera with temperature measurement. https://infraredcameras.com/thermal-infrared-products/mirage-640-p-series/. Accessed 6 Aug 2018
  22. 22.
    FLIR A6700sc MWIR (2018) Science-grade MWIR INSB camera. https://www.flir.com/products/a6700sc-mwir/. Accessed 6 Aug 2018
  23. 23.
    Moldosanov K, Postnikov A (2016) Beilstein J Nanotechnol 7:983.  https://doi.org/10.3762/bjnano.7.90 CrossRefGoogle Scholar
  24. 24.
    Postnikov AV, Moldosanov KA (2018) Nanotechnology 29(28):285704. http://stacks.iop.org/0957-4484/29/i=28/a=285704 CrossRefGoogle Scholar
  25. 25.
    TYDEX® THz materials (2018). http://www.tydexoptics.com/products/thz_optics/thz_materials/. Accessed 6 Aug 2018
  26. 26.
    Postnikov A, Moldosanov K (2016) In: Maffucci A, Maksimenko SA (eds) Fundamental and applied nano-electromagnetics. The NATO science for peace and security programme, Series B: physics and biophysics. Springer, Dordrecht, pp 171–201. https://doi.org/10.1007/978-94-017-7478-9. Proceedings of the NATO Advanced Research Workshop on Fundamental and Applied Electromagnetics, Minsk, Belarus, 25–27 May 2015Google Scholar
  27. 27.
    TYDEX® THz lenses (2018). http://www.tydexoptics.com/products/thz_optics/thz_lens/. Accessed 6 Aug 2018
  28. 28.
    Kubo R (1962) J Phys Soc Jpn 17(6):975.  https://doi.org/10.1143/JPSJ.17.975.CrossRefADSGoogle Scholar
  29. 29.
  30. 30.
    Moldosanov K, Postnikov A (2018) On the plausible nature of the size effect in heterogeneous catalysis on gold nanoparticles. https://arxiv.org/abs/1808.10607
  31. 31.
    Zhang ZM (2007) Nano/microscale heat transfer. McGraw Hill professional. McGraw-Hill Education. https://books.google.fr/books?id=64ygtm0HWtcC Google Scholar
  32. 32.
    Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders College. https://books.google.fr/books?id=FRZRAAAAMAAJ zbMATHGoogle Scholar
  33. 33.
  34. 34.
    Moldosanov KA, Lelevkin VM, Kozlov PV, Kaveev AK (2012) J Nanophotonics 6:061716. https://doi.org/10.1117/1.JNP.6.061716 CrossRefADSGoogle Scholar
  35. 35.
    Gafner YY, Gafner SL, Zamulin S, Redel LV, Baidyshev VS (2015) Physics of Metals and Metallography 116(6):568. https://doi.org/10.1134/S0031918X15040055. Original Russian text published in: Fizika Metallov i Metallovedenie 116(6):602–609, 2015CrossRefADSGoogle Scholar
  36. 36.
    Stojanovic N, Maithripala DHS, Berg JM, Holtz M (2010) Phys Rev B 82:075418.  https://doi.org/10.1103/PhysRevB.82.075418. https://link.aps.org/doi/10.1103/PhysRevB.82.075418
  37. 37.
    Huang CL, Feng YH, Zhang XX, Li J, Wang G, Chou AH (2013) Acta Physica Sinica 62(2):026501.  https://doi.org/10.7498/aps.62.026501 Google Scholar
  38. 38.
    Postnikov AV, Moldosanov KA (2012) J Nanophotonics 6:061709. https://doi.org/10.1117/1.JNP.6.061709.CrossRefADSGoogle Scholar
  39. 39.
  40. 40.
    Okamoto H, Massalski TB (1985) Bull Alloy Phase Diagr 6(3):229. https://doi.org/10.1007/BF02880404 CrossRefGoogle Scholar
  41. 41.
  42. 42.
    Nahm TU, Jung R, Kim JY, Park WG, Oh SJ, Park JH, Allen JW, Chung SM, Lee YS, Whang CN (1998) Phys Rev B 58:9817.  https://doi.org/10.1103/PhysRevB.58.9817. https://link.aps.org/doi/10.1103/PhysRevB.58.9817 CrossRefADSGoogle Scholar
  43. 43.
  44. 44.
    Darling AS (1972) Gold Bull 5(4):74. https://doi.org/10.1007/BF03215168 CrossRefGoogle Scholar
  45. 45.
    Rowland T, Cusack NE, Ross RG (1974) J Phys F Metal Phys 4(12):2189. http://stacks.iop.org/0305-4608/4/i=12/a=015 CrossRefADSGoogle Scholar
  46. 46.
    Gallerano GP, Biedron S (2004) In Proceedings of the 2004 FEL Conference, p 216. http://accelconf.web.cern.ch/AccelConf/f04/papers/FRBIS02/FRBIS02.PDF
  47. 47.
    Kuznetsov SA, Paulish AG, Gelfand AV, Lazorskiy PA, Fedorinin VN (2011) Appl Phys Lett 99(2):023501. https://doi.org/10.1063/1.3607474 CrossRefADSGoogle Scholar
  48. 48.
    Kuznetsov SA, Paulish AG, Gelfand AV, Lazorskiy PA, Fedorinin VN, Arzhannikov AV (2011) Tech Mess 78(11):526. doi: 10.1524/teme.2011.0208.  https://doi.org/10.1524/teme.2011.0208 CrossRefGoogle Scholar
  49. 49.
    Kuznetsov SA, Paulish AG, Gelfand AV, Lazorskiy PA, Fedorinin VN (2012) Prog Electromagn Res 122:93.  https://doi.org/10.2528/PIER11101401. http://www.jpier.org/PIER/pier.php?paper=11101401 CrossRefGoogle Scholar
  50. 50.
    Kuznetsov SA, Paulish AG, Gelfand AV, Astafiev MA, Arzhannikov AV, Fedorinin VN, Thumm MKA (2012) Proc SPIE 8423:8423. https://doi.org/10.1117/12.922728 ADSGoogle Scholar
  51. 51.
    Zagubisalo PS, Paulish AG, Kuznetsov SA (2014) J Phys Conf Ser 490(1):012174. http://stacks.iop.org/1742-6596/490/i=1/a=012174 CrossRefGoogle Scholar
  52. 52.
    Paulish AG, Kuznetsov SA (2016) Tech Phys Lett 42(11):1130. https://doi.org/10.1134/S1063785016110195. Published in: Pis’ma v Zhurnal Tekhnicheskoi Fiziki 42(22):64–71, 2016CrossRefADSGoogle Scholar
  53. 53.
    Kuznetsov SA, Paulish AG, Navarro-Cía M, Arzhannikov AV (2016) Sci Rep 6:21079.  https://doi.org/10.1038/srep21079. https://www.nature.com/articles/srep21079
  54. 54.
    DALI D900-series – cooled FPA module (2018). http://www.dali-tech.us/products/d900-series-68.html. Accessed 6 Aug 2018Google Scholar
  55. 55.
    Sofradir DAPHNIS-HD MWIR detector (2018). http://www.sofradir.com/product/daphnis-hd-mw/. Accessed 6 Aug 2018
  56. 56.
    Moldosanov KA, Postnikov AV (2018) Converter of terahertz vibrations into terahertz electromagnetic radiation. Russian patent RU 2650343. Priority: 20.03.2017, date of publication: 11.04.2018 (Bull. 11). http://www1.fips.ru/fips_servl/fips_servlet?DB=RUPAT&DocNumber=2650343&TypeFile=html (2017). https://patents.google.com/patent/RU2650343C1/en. Accessed August 7, 2018
  57. 57.
    Moldosanov KA, Lelevkin VM, Kairyev NZh, Postnikov AV (2016) Terahertz-infrared converter for visualiation of sources of terahertz radiation. Russian patent RU 2642119. Priority: 21.06.2016, date of publication: 24.01.2018 (Bull. 3). http://www1.fips.ru/fips_servl/fips_servlet?DB=RUPAT&DocNumber=2642119&TypeFile=html. https://patents.google.com/patent/RU2642119C2/en. Accessed Aug 7 2018
  58. 58.
    Moldosanov K, Postnikov AV (2018) Source of terahertz radiation. Russian patent RU 2622093. Priority: 13.05.2016, date of publication: 09.06.2017 (Bull. 16). http://www1.fips.ru/fips_servl/fips_servlet?DB=RUPAT&DocNumber=2622093&TypeFile=html (2016). https://patents.google.com/patent/RU2622093C1/en. Accessed 7 Aug 2018
  59. 59.
    Moldosanov KA, Postnikov AV, Lelevkin VM, Kairyev NJ (2017) Ferroelectrics 509(1):158 (2017). https://doi.org/10.1080/00150193.2017.1296344.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • A. V. Postnikov
    • 1
    Email author
  • K. A. Moldosanov
    • 2
  • N. J. Kairyev
    • 2
  • V. M. Lelevkin
    • 2
  1. 1.Université de LorraineMetzFrance
  2. 2.Kyrgyz-Russian Slavic UniversityBishkekKyrgyzstan

Personalised recommendations