First- and Second Order Light Scattering Processes in Biological Photonic Nanostructures

  • Géza I. MárkEmail author
  • Krisztián Kertész
  • Gábor Piszter
  • Zsolt Bálint
  • László P. Biró
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


The colors of various butterflies often originate from photonic nanostructures, found in the scales covering their wings. Such colors are called structural colors. The color generating scales are composed of a nanostructured chitinous material containing air voids, which causes the structural colors through light interference. We performed optical spectrum simulations utilizing full 3D Maxwell equation calculations on model structures to reveal the connection between the 3D structure and the optical spectrum. Our simulations showed that different scattering processes determine the spectrum in different wavelength ranges. For large wavelengths (>350 nm) the optical reflection can be well described by a corresponding effective multilayer model and the peak positions are well represented by a simple first Born approximation. One has to include second order scattering processes inside the layers, however, in order to correctly reproduce the small wavelength side of the spectrum (<350 nm). This means that such details of structure, as the shape of the air voids determine the small wavelength spectrum.


Photonic crystals Bioinspiration First born approximation Ewald sphere 



This work was supported by the Hungarian NKFIH Grant Nos K 115724 and OTKA K 111741. G. I. M., and G. P. wish to thank the Hungarian Academy of Sciences and the Belgian FNRS for financial support.


  1. 1.
    Fox HM, Vevers G (1960) The nature of animal colours. Macmillan, New YorkGoogle Scholar
  2. 2.
    Berthier S (2007) Iridescences: the physical colors of insects. Springer, New YorkGoogle Scholar
  3. 3.
    Biró LP et al (2003) Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair. Phys Rev E 67:021907CrossRefADSGoogle Scholar
  4. 4.
    Vukusic P, Sambles JR, Lawrence CR, Wootton RJ (1999) Quantified interference and diffraction in single Morpho butterfly scales. Proc R Soc Lond B Biol Sci 266:1403CrossRefGoogle Scholar
  5. 5.
    Biró LP, Vigneron JP (2011) Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration. Laser Photonics Rev 5:27CrossRefADSGoogle Scholar
  6. 6.
    Kertész K, Molnár G, Vértesy Z, Koós AA, Horváth ZE, Márk GI, Tapasztó L, Bálint Z, Tamáska I, Deparis O et al (2008) Photonic band gap materials in butterfly scales: a possible source of “Blueparints”. Mater Sci Eng B Solid-State Mater Adv Technol 149:259. ISSN 0921-5107CrossRefGoogle Scholar
  7. 7.
    Vukusic P, Sambles JR, Ghiradella H (2000) Optical classification of microstructure in butterfly wing-scales. Photon Sci 6:61Google Scholar
  8. 8.
    Ghiradella H (1998) Microscopic anatomy of invertebrates, vol 11A (Locke M (ed)). Wiley-Liss, New York, pp 257–287Google Scholar
  9. 9.
    Yablonovitch E (1993) Photonic band-gap structures. J Opt Soc Am B Opt Phys 10:283CrossRefADSGoogle Scholar
  10. 10.
    Jin C, Meng X, Cheng B, Li Z, Zhang D (2001) Photonic gap in amorphous photonic materials. Phys Rev B 63:195107CrossRefADSGoogle Scholar
  11. 11.
    Vukusic P, Sambles JR (2003) Photonic structures in biology. Nature (London) 424:852CrossRefADSGoogle Scholar
  12. 12.
    Kertész K, Bálint Z, Vértesy Z, Márk GI, Lousse V, Vigneron J-P, Rassart M, Biró LP (2006) Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus. Phys Rev E 74:021922CrossRefADSGoogle Scholar
  13. 13.
    Bálint Z, Kertész A, Moser A, Kertész K, Biró LP, Parker AR (2008) A supposition: structural colours resulting from both natural and sexual selection on an individual wing in the butterfly genusCyanophrys (Lepidoptera: Lycaenidae). Ann Hist-Natur Mus Nat Hung 101:63Google Scholar
  14. 14.
    Taflove A, Hagness S (2005) Computational electrodynamics: the finite-difference time-domain method. Artech House Publishers, NorwoodGoogle Scholar
  15. 15.
    Benedek GB (1971) Theory of transparency of the eye. Appl Opt 10:459CrossRefADSGoogle Scholar
  16. 16.
    Márk G, Vértesy Z, Kertész K, Bálint Z, Biró L (2009) Order-disorder effects in structure and color relation of photonic-crystal-type nanostructures in butterfly wing scales. Phys Rev E Stat Nonlinear Soft Matter Phys Rev E 80(5 Pt 1):051903Google Scholar
  17. 17.
    Prum RO, Quinn T, Torres RH (2006) Anatomically diverse butterfly scales all produce structural colours by coherent scattering. J Exp Biol 209:748CrossRefGoogle Scholar
  18. 18.
    Maiwald L, Lang S, Jalas D, Renner H, Petrov AY, Eich M (2018) Ewald sphere construction for structural colors. Opt Express 26:11352–11365CrossRefADSGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Géza I. Márk
    • 1
    Email author
  • Krisztián Kertész
    • 1
  • Gábor Piszter
    • 1
  • Zsolt Bálint
    • 2
  • László P. Biró
    • 1
  1. 1.Institute of Technical Physics and Materials ScienceCentre for Energy ResearchBudapestHungary
  2. 2.Hungarian Natural History MuseumBudapestHungary

Personalised recommendations