Advertisement

Evolution of Structural and Magnetic Characteristics of Template Synthesized Nickel Nanotubes

  • Artem Kozlovskiy
  • Maxim Zdorovets
  • Daryn Borgekov
  • Milana Ibragimova
  • Ilya Korolkov
  • Alena ShumskayaEmail author
  • Maksim Kutuzau
  • Egor Kaniukov
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

This work is devoted to the study of the relationship between synthesis conditions with structure and morphological peculiarities of nickel nanotubes. The influence of both synthesis regimes (temperature, potential correlation and deposition time) and template parameters (pore diameters) is estimated. Based on established regularities in the evolution of morphology and structural parameters, dynamics of the nickel nanotubes main magnetic characteristics is analyze.

Keywords

Template synthesis Ni nanotubes Texture analysis Electrical properties Magnetic properties 

Notes

Acknowledgements

The authors acknowledge the support of the work in frames of H2020 – MSCA – RISE2017 – 778308 – SPINMULTIFILM Project, and Belarusian Foundation for Basic Research [project number Ф18М-080] and [project number Ф18КАЗГ-001].

References

  1. 1.
    Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles : preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:1–13CrossRefGoogle Scholar
  2. 2.
    Yeszhanov AB, Mashentseva AA, Korolkov IV, Gorin YG, Kozlovskiy AL (2018) Copper nanotube composite membrane as a catalyst in Mannich reaction. Chem Pap 72:1–6CrossRefGoogle Scholar
  3. 3.
    Korolkov IV, Kozlovskiy AL, Gorin YG (2018) Immobilization of carborane derivatives on Ni/Fe nanotubes for BNCT. J Nanopart Res, 20:Article ID 240Google Scholar
  4. 4.
    Kozlovskiy AL et al (2017) Comprehensive study of Ni nanotubes for bioapplications: from synthesis to payloads attaching. J Nanomater 2017:Article ID 3060972CrossRefGoogle Scholar
  5. 5.
    Sander MS, Côté MJ, Gu W, Kile BM, Tripp CP (2004) Template-assisted fabrication of dense, aligned arrays of Titania nanotubes with well-controlled dimensions on substrates. Adv Mater 16:2052–2057CrossRefGoogle Scholar
  6. 6.
    Graham LM, Cho S, Kim SK, Noked M, Lee SB (2014) Role of boric acid in nickel nanotube electrodeposition: a surface-directed growth mechanism. Chem Commun 50:527–529CrossRefGoogle Scholar
  7. 7.
    Alnassar M, Alfadhel A, Ivanov YP, Kosel J (2015) Magnetoelectric polymer nanocomposite for flexible electronics. J Appl Phys 117:17D711CrossRefGoogle Scholar
  8. 8.
    Shumskaya A, Kaniukov E, Kutuzau M, Kozlovskiy A, Zdorovets M (2017) Electrodeposited ferromagnetic nanotubes: structure and magnetic properties (pp 1–4)Google Scholar
  9. 9.
    Roose B, Ummadisingu A, Correa-baena J, Saliba M (2017) Nano Energy Spontaneous crystal coalescence enables highly efficient perovskite solar cells. Nano Energy 39:24–29CrossRefGoogle Scholar
  10. 10.
    Jovanović S, Spreitzer M, Tramšek M, Trontelj Z, Suvorov D (2014) Effect of oleic acid concentration on the physicochemical properties of cobalt ferrite nanoparticles. J Phys Chem C 118:13844–13856CrossRefGoogle Scholar
  11. 11.
    Shumskaya AE et al (2017) Template synthesis and magnetic characterization of FeNi nanotubes. Prog Electromagn Res C 75:23–30CrossRefGoogle Scholar
  12. 12.
    Shumskaya AE, Kaniukov EY, Kozlovskiy AL, Zdorovets MV, Rusakov VS, Kadyrzhanov KK (2017) Structure and physical properties of Iron nanotubes obtained by template synthesis. Phys Solid State 59:784–790CrossRefADSGoogle Scholar
  13. 13.
    Martín JI et al (2002) Fabrication and magnetic properties of arrays of amorphous and polycrystalline ferromagnetic nanowires obtained by electron beam lithography. J Magn Magn Mater 249:156–162CrossRefADSGoogle Scholar
  14. 14.
    Barth S et al (2009) Studies on surface facets and chemical composition of vapor grown one-dimensional magnetite nanostructures. Cryst Growth Des 9:1077–1081CrossRefGoogle Scholar
  15. 15.
    Morber JR et al (2006) PLD-assisted VLS growth of aligned ferrite nanorods, nanowires, and nanobelts-synthesis, and properties. J Phys Chem B 110:21672–21679CrossRefGoogle Scholar
  16. 16.
    Yarmolich M, Kalanda N, Demyanov S, Fedotova J, Bayev V, Sobolev NA (2016) Charge ordering and magnetic properties in nanosized Sr 2 FeMoO 6-δ powders. Phys Status Solidi 253:2160–2166CrossRefGoogle Scholar
  17. 17.
    Liu Z, Zhang Q, Shi G, Li Y, Wang H (2011) Solvothermal synthesis and magneto-optical properties of Zn1−xNixO hierarchical microspheres. J Magn Magn Mater 323:1022–1026CrossRefADSGoogle Scholar
  18. 18.
    Hua Z et al (2006) Metal nanotubes prepared by a sol–gel method followed by a hydrogen reduction procedure. Nanotechnology 17:5106–5110CrossRefADSGoogle Scholar
  19. 19.
    Zhou D, Wang T, Zhu MG, Guo ZH, Li W, Li FS (2011) Magnetic interaction in FeCo alloy nanotube array. J Magnet 16:413–416CrossRefGoogle Scholar
  20. 20.
    Vivas LG, Ivanov YP, Trabada DG, Proenca MP, Chubykalo-Fesenko O, Vázquez M (2013) Magnetic properties of co nanopillar arrays prepared from alumina templates. Nanotechnology 24:105703CrossRefADSGoogle Scholar
  21. 21.
    Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266:1961–1966CrossRefADSGoogle Scholar
  22. 22.
    Haehnel V et al (2010) Towards smooth and pure iron nanowires grown by electrodeposition in self-organized alumina membranes. Acta Mater 58:2330–2337CrossRefGoogle Scholar
  23. 23.
    Giuliani J, Monton C (2017) Template-assisted electrodeposition of Ni and Ni/Au nanowires on planar and curved substrates. Nanotechnology 29:075301CrossRefADSGoogle Scholar
  24. 24.
    Gehlawat D, Chauhan RP (2014) Swift heavy ions induced variation in the electronic transport through Cu nanowires. Mater Chem Phys 145:60–67CrossRefGoogle Scholar
  25. 25.
    Samykano M, Mohan R, Aravamudhan S (2014) Morphology and crystallographic characterization of nickel nanowires—influence of magnetic field and current density during. Synth J Nanotechnol Eng Med 5:021005CrossRefGoogle Scholar
  26. 26.
    Kalska-Szostko B, Wykowska U, Satuła D (2015) Magnetic nanowires (Fe, Fe-Co, Fe-Ni) – magnetic moment reorientation in respect of wires composition. Nukleonika 60:63–67CrossRefGoogle Scholar
  27. 27.
    Kaniukov E, Shumskaya A, Yakimchuk D, Kozlovskiy A, Ibrayeva A, Zdorovets M (2017) Characterization of pet track membrane parameters. In: NANO 2016: Nanophysics, nanomaterials, interface studies, and applications, 2017. Springer, Cham, pp 79–91CrossRefGoogle Scholar
  28. 28.
    Cao H et al (2006) Generation and growth mechanism of metal (Fe, Co, Ni) nanotube arrays. ChemPhysChem 7:1500–1504CrossRefGoogle Scholar
  29. 29.
    Shimanovich DL, Vorobjova AI, Tishkevich DI, Trukhanov AV, Zdorovets MV, Kozlovskiy AL (2018) Preparation and morphology-dependent wettability of porous alumina membranes. Beilstein J Nanotechnol 9:1423–1436CrossRefGoogle Scholar
  30. 30.
    Yakimchuk D et al (2018) Silver nanostructures evolution in porous SiO2/p-Si matrices for wide wavelength surface-enhanced Raman scattering applications. MRS Commun 8:95–99CrossRefGoogle Scholar
  31. 31.
    Kaur A, Chauhan RP (2014) Effect of gamma irradiation on electrical and structural properties of Zn nanowires. Radiat Phys Chem 100:59–64CrossRefADSGoogle Scholar
  32. 32.
    Kozlovskiy AL, Shlimas DI, Shumskaya AE, Kaniukov EY, Zdorovets MV, Kadyrzhanov KK (2017) Influence of electrodeposition parameters on structural and morphological features of Ni nanotubes. Phys Met Metallogr 118:164–169CrossRefADSGoogle Scholar
  33. 33.
    Yoo B, Xiao F, Bozhilov KN, Herman J, Ryan MA, Myung NV (2007) Electrodeposition of thermoelectric superlattice nanowires. Adv Mater 19:296–299CrossRefGoogle Scholar
  34. 34.
    Motoyama M, Fukunaka Y, Sakka T, Ogata YH (2007) Initial stages of electrodeposition of metal nanowires in nanoporous templates. Electrochim Acta 53:205–212CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Artem Kozlovskiy
    • 1
    • 2
  • Maxim Zdorovets
    • 1
    • 2
  • Daryn Borgekov
    • 1
    • 2
  • Milana Ibragimova
    • 2
  • Ilya Korolkov
    • 2
  • Alena Shumskaya
    • 3
    Email author
  • Maksim Kutuzau
    • 3
  • Egor Kaniukov
    • 3
  1. 1.Gumilyov Eurasian National UniversityAstanaKazakhstan
  2. 2.Institute of Nuclear PhysicsAlmatyKazakhstan
  3. 3.Scientific-Practical Materials Research CentreNAS of BelarusMinskBelarus

Personalised recommendations