Polymer Nanocomposites with Hybrid Fillers as Materials with Controllable Electrodynamic Characteristics for Microwave Devices

  • Ludmila Y. MatzuiEmail author
  • Olena S. Yakovenko
  • Ludmila L. Vovchenko
  • Oleg V. Lozitsky
  • Viktor V. Oliynyk
  • Volodymyr V. Zagorodnii
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


The results of investigation of microwave electromagnetic properties in wide frequency range (1–67 GHz) of the hybrid polymer composites based on combined introduction of ferrite and MWCNTs nanoparticles are presented. The surge in 3–5 orders of the conductivity value has been founded in MWCNTs/Fe3O4 (BaFe12O19)/epoxy composites with 2 and 5 wt. % of MWCNTs as compared with MWCNTs/epoxy composites, and these changes are more considerable for lower content of MWCNTs in the epoxy matrix. The addition of 30 wt. % of Fe3O4 (BaFe12O19) nanoparticles to MWCNTs/epoxy composites leads to the significant increase of the complex permittivity values and to the frequency shift of relaxation maximums. The natural ferromagnetic resonance was revealed as the main mechanism of magnetic loss in MWCNTs/Fe3O4/epoxy composites at frequencies up to 10–12 GHz while the eddy current induced mechanism becomes the dominant in magnetic loss at the further frequency increase. The natural ferromagnetic resonance determines the character of magnetic loss in BaFe12O19-filled composites in the whole investigated frequency range.

The integration of nanotubes and ferrite admixture of Fe3O4 or BaFe12O19 in MWCNT/30 wt. % Fe3O4 (or 30 wt. % BaFe12O19) ternary composites provides synergetic effects and complementary behavior (e.g., various polarization relaxations as additional loss mechanisms), which greatly contribute to the microwave absorption properties for both studied ternary composites. The absorption bandwidth reaches 13–17 GHz for thin (0.6–0.8 mm) composite samples with 2 wt. % of nanotubes content. The increase of MWCNTs content and the use of two component fillers lead to decrease of the effective reflection loss in the frequency range above 20 GHz. The maximum reflection loss reaches 49 dB for Fe3O4- and 39 dB for BaFe12O19-filled composites of 1.1–1.2 mm thickness while the absorption bandwidth does not exceed 5 GHz.


Polymer composite Nanocarbon Hybrid filler Ferrite, microwave shielding 


  1. 1.
    Golio M, Golio J (2007) RF and microwave passive and active technologies. CRC Press, London, p 736CrossRefGoogle Scholar
  2. 2.
    Thomassin JM, Jerome C, Pardoen T, Bailly C, Huynen I, Detrembleur C (2013) Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater Sci Eng R 74(7):211–232CrossRefGoogle Scholar
  3. 3.
    Park DH, Lee YK, Park SS, Lee CS, Kim SH, Kim WN (2013) Effects of hybrid fillers on the electrical conductivity and EMI shielding efficiency of polypropylene/conductive filler composites. Macromol Res 21(8):905–910CrossRefGoogle Scholar
  4. 4.
    Yoo TW, Lee YK, Lim SJ, Yoon HG, Kim WN (2014) Effects of hybrid fillers on the electromagnetic interference shielding effectiveness of polyamide 6/conductive filler composites. J Mater Sci 49(4):1701–1708CrossRefADSGoogle Scholar
  5. 5.
    Chhowalla M, Shin HS, Eda G, Li L, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5(4):263–275CrossRefGoogle Scholar
  6. 6.
    Hu C, Mou Z, Lu G, Chen N, Dong Z, Hu M, Qu L (2013) 3D graphene–Fe3O4 nanocomposites with high-performance microwave absorption. Phys Chem Chem Phys 15(31):13038–13043CrossRefGoogle Scholar
  7. 7.
    Zhang H, Xie A, Wang C, Wang H, Shen Y, Tian X (2013) Novel rGO/α-Fe2O3 composite hydrogel: synthesis, characterization and high performance of electromagnetic wave absorption. J Mater Chem A 1(30):8547–8552CrossRefGoogle Scholar
  8. 8.
    Zhang X, Wang G, Cao W, Wei Y, Liang J, Guo L, Cao M (2014) Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl Mater Interfaces 6(10):7471–7478CrossRefGoogle Scholar
  9. 9.
    Wu F, Xia Y, Wang Y, Wang M (2014) Two-step reduction of self-assembed three-dimensional (3D) reduced graphene oxide (RGO)/zinc oxide (ZnO) nanocomposites for electromagnetic absorption. J Mater Chem A 2(47):20307–20315CrossRefGoogle Scholar
  10. 10.
    Liu PB, Huang Y, Wang L (2013) Synthesis and excellent electromagnetic absorption properties of polypyrrole-reduced graphene oxide–Co3O4 nanocomposites. J Alloys Compd 573:151–156CrossRefGoogle Scholar
  11. 11.
    Phan CH, Mariatti M, Koh YH (2016) Electromagnetic interference shielding performance of epoxy composites filled with multiwalled carbon nanotubes/manganese zinc ferrite hybrid fillers. J Magn Magn Mater 401:472–478CrossRefADSGoogle Scholar
  12. 12.
    Li N, Huang GW, Li YQ, Xiao HM, Feng QP, Hu N, Fu SY (2017) Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl Mater Interfaces 9(3):2973–2983CrossRefGoogle Scholar
  13. 13.
    Li J, Xie Y, Lu W, Chou T-W (2018) Flexible electromagnetic wave absorbing composite based on 3D rGO-CNT-Fe3O4 ternary films. Carbon 129:76–84CrossRefGoogle Scholar
  14. 14.
    Kong B, Li ZW, Liu L, Huang R, Abshinova M, Yang ZH, Tang CB, Tan PK, Deng CR (2013) Recent progress in some materials and structures for specific electromagnetic applications. Int Mater Rev 58(4):203–259CrossRefGoogle Scholar
  15. 15.
    Zahari MH, Guan BH, Meng CE, Mansor MFC, Chuan LK (2016) EMI shielding effectiveness of composites based on barium ferrite, PANI, and MWCNT. PIER M 52:79–87CrossRefGoogle Scholar
  16. 16.
    Qing Y, Zhou W, Huang S, Huang Z, Luo F, Zhu D (2014) Evolution of double magnetic resonance behavior and electromagnetic properties of flake carbonyl iron and multi-walled carbon nanotubes filled epoxy-silicone. J Alloys Compd 583:471–475CrossRefGoogle Scholar
  17. 17.
    Liu PB, Huang Y, Yan J, Yang YW, Zhao Y (2016) Construction of CuS nanoflakes vertically aligned on magnetically decorated graphene and their enhanced microwave absorption properties. ACS Appl Mater Interfaces 8:5536–5546CrossRefGoogle Scholar
  18. 18.
    Biswas S, Kar GP, Bose S (2015) Tailor-made distribution of nanoparticles in blend structure toward outstanding electromagnetic interference shielding. ACS Appl Mater Interfaces 7(45):25448–25463CrossRefGoogle Scholar
  19. 19.
    Gao Y, Gao X, Li J, Guo S (2017) Improved microwave absorbing property provided by the filler’s alternating lamellar distribution of carbon nanotube/carbonyl iron/ poly(vinyl chloride) composites. Compos Sci Technol 158:175–185CrossRefGoogle Scholar
  20. 20.
    Korskanov V, Dolgoshey V, Shantaliy T, Karpova I, Dragan K, Rukhaylo M (2017) Influence of an external magnetic field on the structure formation and transport properties of polymeric composites based on epoxy and Fe3O4. Ceram: Sci Life 3(36):28–33Google Scholar
  21. 21.
    Lazarenko A, Vovchenko L, Prylutskyy Y, Matzuy L, Ritter U, Scharff P (2009) Mechanism of thermal and electrical conductivity in polymer-nanocarbon composites. Mat-wissu Werkstofftech 40:268–272CrossRefGoogle Scholar
  22. 22.
    Perets Y, Matzuy L, Vovchenko L, Prylutskyy Y, Scharff P, Ritter U (2014) The effect of boron nitride on electrical conductivity of nanocarbon-polymer composites. J Mater Sci 49(5):2098–2105CrossRefADSGoogle Scholar
  23. 23.
    Matzui L, Vovchenko L, Perets Y, Lazarenko O (2013) Electrical conductivity of epoxy resin filled with graphite nanoplatelets and boron nitride. Mat-wissuWerkstofftech 44(2–3):254–258CrossRefGoogle Scholar
  24. 24.
    Chen YH, Huang ZH, Lu MM, Cao WQ, Yuan J, Zhang DQ, Cao MS (2015) 3D Fe3O4 nanocrystals decorating carbon nanotubes to tune electromagnetic properties and EnhanceMicrowave absorption capacity. J Mater Chem A 3(24):12621–12625CrossRefGoogle Scholar
  25. 25.
    Zhao B, Zhao WY, Shao G, Fan BB, Zhang R (2015) Morphology-control synthesis of a core-shell structured NiCu alloy with tunable electromagnetic-wave absorption capabilities. ACS Appl Mater Interfaces 7:12951–12960CrossRefGoogle Scholar
  26. 26.
    Song NN, Yang HT, Liu HL, Ren X, Ding HF, Zhang XQ, Cheng ZH (2013) Exceeding natural resonance frequency limit of monodisperse Fe3O4 nanoparticles via superparamagnetic relaxation. Sci Rep 3:3161CrossRefGoogle Scholar
  27. 27.
    Kittel C (1948) On the theory of ferromagnetic resonance absorption. Phys Rev 73:155–161CrossRefADSGoogle Scholar
  28. 28.
    Yakovenko OS, Matzui LY, Vovchenko LL, Trukhanov AV, Kazakevich IS, Trukhanov SV, Prylutskyy YI, Ritter U (2017) Magnetic anisotropy of the graphite nanoplatelet–epoxy and MWCNT–epoxy composites with aligned barium ferrite filler. J Mater Sci 52(9):5345–5358CrossRefADSGoogle Scholar
  29. 29.
    Walz F, Rivas J, Martínez D, Kronmüller H (1994) Influence of Ba content on the magnetic after-effect spectra in barium ferrites. Phys Status Solidi A 143:137–148CrossRefADSGoogle Scholar
  30. 30.
    Wang GZ, Gao Z, Tang SW, Chen CQ, Duan FF, Zhao SC, Lin SW, Feng YH, Zhou L, Qin Y (2012) Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6:11009–11017CrossRefGoogle Scholar
  31. 31.
    Zhang H, Rao Y, Guo J, Qin G (2016) Multiple-phase carbon-coated FeSn2/Sn nanocomposites for high-frequency microwave absorption. Carbon 96:972–979CrossRefGoogle Scholar
  32. 32.
    Fan X, Guan J, Wang W, Tong G (2009) Morphology evolution, magnetic and microwave absorption properties of nano/submicrometre iron particles obtained at different reduced temperatures. J Phys D Appl Phys 42(7):075006CrossRefADSGoogle Scholar
  33. 33.
    Liu XG, Jiang JJ, Geng DY, Han Z, Liu W, Zhang ZD (2009) Dual nonlinear dielectric resonance and strong natural resonance in Ni/ZnO nanocapsules. Appl Phys Lett 94(5):053119CrossRefADSGoogle Scholar
  34. 34.
    Al-Ghamdi AA, Al-Hartomy OA, Al-Solamy FR, Dishovsky N, Mihaylov M, Malinova P, Atanasov N (2016) Natural rubber based composites comprising different types of carbon-silica hybrid fillers. Comparative study on their electric, dielectric and microwave properties, and possible applications. Mater Sci Appl 7(6):295–306Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Ludmila Y. Matzui
    • 1
    Email author
  • Olena S. Yakovenko
    • 1
  • Ludmila L. Vovchenko
    • 1
  • Oleg V. Lozitsky
    • 1
  • Viktor V. Oliynyk
    • 2
  • Volodymyr V. Zagorodnii
    • 2
  1. 1.Department of PhysicsTaras Shevchenko National University of KyivKyivUkraine
  2. 2.Department of Radio Physics, Electronics and Computer SystemsTaras Shevhenko National University of KyivKyivUkraine

Personalised recommendations