Self-Organization of Plasmonic Nanostructures in Pores of Silica Template for SERS

  • Dzmitry YakimchukEmail author
  • Egor Kaniukov
  • Victoria Bundyukova
  • Sergey Demyanov
  • Vladimir Sivakov
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


Plasmonic nanostructures can greatly impact on Surface-enhanced Raman spectroscopy (SERS) for molecular analysis of materials and biological objects. Here we consider the criteria for plasmon-active metals choice, and also give examples of Au, Ag, and Cu nanostructures obtained by the controlled self-assembly in limited pore volume of the SiO2/Si template for SERS applications. Based on the price/durability/amplification ratio, silver nanostructures are considered in more detail. It is shown that, depending on the parameters of the SiO2/Si template and the synthesis regimes, it is possible to obtain silver structures with the form of crystallites, “sunflowers” and dendrites. The effectiveness of the application for SERS of SiO2(Ag)/Si systems with sunflower-like structures and dendrites is demonstrated. It is found that the dendrites can be used for SERS with the benefit of lasers of different wavelengths (473, 532, and 633 nm).


Ion track technology Template synthesis Plasmonic nanostructures Dendrites SERS 



This work was supported by the Scientific-technical ‘program Technology-SG’ (project number V.S. is gratefully acknowledges the German Federal Ministry of Education and Research (BMBF) in frame of Baltic Sea Network “NanoPhoto” under Grant No. 01DS14017 and National Science Foundation of Germany (DFG) under Grant No. SI-1893/2-1 for the financial support.


  1. 1.
    Atwater HA (2007) The promise of plasmonics. ACM SIGDA Newsl 37:58–63CrossRefGoogle Scholar
  2. 2.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193CrossRefADSGoogle Scholar
  3. 3.
    Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98:011101CrossRefADSGoogle Scholar
  4. 4.
    Sharma B, Frontiera RR, Henry A-I, Ringe E, Van Duyne RP (2012) SERS: materials, applications, and the future. Mater Today 15:16–25CrossRefGoogle Scholar
  5. 5.
    Xia L et al (2014) Visualized method of chemical enhancement mechanism on SERS and TERS. J Raman Spectrosc 45:533–540CrossRefADSGoogle Scholar
  6. 6.
    Zhao LL, Jensen L, Schatz GC (2006) Pyridine-Ag20 cluster: a model system for studying surface-enhanced Raman scattering. J Am Chem Soc 128:2911–2919CrossRefGoogle Scholar
  7. 7.
    Arenas JF, Woolley MS, Tocón IL, Otero JC, Marcos JI (2000) Complete analysis of the surface-enhanced Raman scattering of pyrazine on the silver electrode on the basis of a resonant charge transfer mechanism involving three states. J Chem Phys 112:7669–7683CrossRefADSGoogle Scholar
  8. 8.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefADSGoogle Scholar
  9. 9.
    Haynes CL et al (2003) Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays †. J Phys Chem B 107:7337–7342CrossRefGoogle Scholar
  10. 10.
    Maier SA (2004) Fundamentals and applications plasmonics: fundamentals and applications physics, vol 677. Springer, College Park, p 10Google Scholar
  11. 11.
    Santoro G et al (2014) Silver substrates for surface enhanced Raman scattering: correlation between nanostructure and Raman scattering enhancement. Appl Phys Lett 104:243107CrossRefADSGoogle Scholar
  12. 12.
    Kneipp K (2007) Surface-enhanced raman scattering. Phys Today 60:40–46CrossRefGoogle Scholar
  13. 13.
    Xia Y, Campbell DJ (2007) Plasmons: why should we care? J Chem Educ 84:91CrossRefGoogle Scholar
  14. 14.
    Kneipp K (2016) Chemical contribution to SERS enhancement: an experimental study on a series of polymethine dyes on silver nanoaggregates. J Phys Chem C 120:21076–21081CrossRefGoogle Scholar
  15. 15.
    Arenas JF, Woolley MS, Tocon IL, Otero JC, Marcos JI (2000) Complete analysis of the surface-enhanced Raman scattering of pyrazine on the silver electrode on the basis of a resonant charge transfer mechanism involving three states. J Chem Phys 112:7669–7683CrossRefADSGoogle Scholar
  16. 16.
    Benz F et al (2016) SERS of individual nanoparticles on a mirror: size does matter, but so does shape. J Phys Chem Lett 7:2264–2269CrossRefGoogle Scholar
  17. 17.
    Shaw CP, Fan M, Lane C, Barry G, Jirasek AI, Brolo AG (2013) Statistical correlation between SERS intensity and nanoparticle cluster size. J Phys Chem C 117:16596–16605CrossRefGoogle Scholar
  18. 18.
    Wei H, Hossein Abtahi SM, Vikesland PJ (2015) Plasmonic colorimetric and SERS sensors for environmental analysis. Environ Sci Nano 2:120–135CrossRefGoogle Scholar
  19. 19.
    Kaniukov E, Kozlovsky A, Shlimas D, Yakimchuk D, Zdorovets M, Kadyrzhanov K (2016) Tunable synthesis of copper nanotubes. IOP Conf Ser Mater Sci Eng 110:012013CrossRefGoogle Scholar
  20. 20.
    Hillebrenner H, Buyukserin F, Stewart JD, Martin CR (2006) Template synthesized nanotubes for biomedical delivery applications. Nanomedicine (Lond) 1:39–50CrossRefGoogle Scholar
  21. 21.
    Kaniukov EY et al (2016) Tunable nanoporous silicon oxide templates by swift heavy ion tracks technology. Nanotechnology 27:115305CrossRefADSGoogle Scholar
  22. 22.
    Schwartz AJ, Kumar M, Adams BL (2000) Electron backscatter diffraction in materials science. Springer, BostonCrossRefGoogle Scholar
  23. 23.
    Isabell TC, Dravid VP (1997) Resolution and sensitivity of electron backscattered diffraction in a cold field emission gun SEM. Ultramicroscopy 67:59–68CrossRefGoogle Scholar
  24. 24.
    Uluok S, Guven B, Eksi H, Ustundag Z, Tamer U, Boyaci IH (2015) Designing multilayered nanoplatforms for SERS-based detection of genetically modified organisms. J Nanopart Res 17:43CrossRefGoogle Scholar
  25. 25.
    Natan MJ (2006) Concluding Remarks: surface enhanced Raman scattering. Faraday Discuss 132:321CrossRefADSGoogle Scholar
  26. 26.
    Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826CrossRefADSGoogle Scholar
  27. 27.
    Ding S-Y, You E-M, Tian Z-Q, Moskovits M (2017) Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem Soc Rev 46:4042–4076CrossRefGoogle Scholar
  28. 28.
    Shahbazyan TV, Stockman MI (2013) Plasmonics: theory and applications. Springer, DordrechtCrossRefGoogle Scholar
  29. 29.
    Brejna PR, Griffiths PR (2010) Electroless deposition of silver onto silicon as a method of preparation of reproducible surface-enhanced Raman spectroscopy substrates and tip-enhanced Raman spectroscopy tips. Appl Spectrosc 64:493–499CrossRefADSGoogle Scholar
  30. 30.
    Qiu T, Wu XL, Mei YF, Chu PK, Siu GG (2005) Self-organized synthesis of silver dendritic nanostructures via an electroless metal deposition method. Appl Phys A Mater Sci Process 81:669–671CrossRefADSGoogle Scholar
  31. 31.
    Qiu T, Wu XL, Shen JC, Xia Y, Shen PN, Chu PK (2008) Silver fractal networks for surface-enhanced Raman scattering substrates. Appl Surf Sci 254:5399–5402CrossRefADSGoogle Scholar
  32. 32.
    Ye W, Shen C, Tian J, Wang C, Hui C, Gao H (2009) Controllable growth of silver nanostructures by a simple replacement reaction and their SERS studies. Solid State Sci 11:1088–1093CrossRefADSGoogle Scholar
  33. 33.
    Sun X, Lin L, Li Z, Zhang Z, Feng J (2009) Novel Ag–Cu substrates for surface-enhanced Raman scattering. Mater Lett 63:2306–2308CrossRefGoogle Scholar
  34. 34.
    Senthil Kumaran CK et al (2013) Preparation and characterization of Copper dendrite like structure by chemical method. Adv Mater Res 678:27–31CrossRefGoogle Scholar
  35. 35.
    Kaniukov EY, Shumskaya EE, Yakimchuk DV, Kozlovskiy AL, Ibragimova MA, Zdorovets MV (2017) Evolution of the polyethylene terephthalate track membranes parameters at the etching process. J Contemp Phys (Armenian Acad Sci) 52:155–160CrossRefADSGoogle Scholar
  36. 36.
    Kaniukov EY et al (2017) Electrochemically deposited copper nanotubes. J Surf Investig X-ray, Synchrotron Neutron Tech 11:270–275CrossRefGoogle Scholar
  37. 37.
    Kozlovskiy AL et al (2017) Comprehensive study of Ni nanotubes for bioapplications: from synthesis to payloads attaching. J Nanomater 2017:1–9CrossRefGoogle Scholar
  38. 38.
    Sivakov V et al (2014) Silver nanostructures formation in porous Si/SiO2 matrix. J Cryst Growth 400:21–26CrossRefADSGoogle Scholar
  39. 39.
    Kaniukov E et al (2017) Growth mechanisms of spatially separated copper dendrites in pores of a SiO2 template. Philos Mag 97:2268–2283CrossRefADSGoogle Scholar
  40. 40.
    Yakimchuk D et al (2018) Silver nanostructures evolution in porous SiO2/p-Si matrices for wide wavelength surface-enhanced Raman scattering applications. MRS Commun 8:95–99CrossRefGoogle Scholar
  41. 41.
    Demyanov S, Kaniukov E, Petrov A, Sivakov V (2014) Positive magnetoresistive effect in Si/SiO2(Cu/Ni) nanostructures. Sensors Actuators A Phys 216:64–68CrossRefGoogle Scholar
  42. 42.
    Peng K-Q, Yan Y-J, Gao S-P, Zhu J (2002) Synthesis of large-area Silicon nanowire arrays via self-assembling nanoelectrochemistry. Adv Mater 14:1164–1167CrossRefGoogle Scholar
  43. 43.
    Sivakov V, Voigt F, Hoffmann B, Gerliz V, Christiansen S (2011) Wet – chemically etched silicon nanowire architectures: formation and properties. In: Hashim A (ed) Nanowires – fundamental research. InTech, Rijeka, pp 45–80Google Scholar
  44. 44.
    Sivakov V, Christiansen S (2012) Novel discovery of Silicon. J Nanoelectron Optoelectron 7:583–590CrossRefGoogle Scholar
  45. 45.
    Gorostiza P, Kulandainathan MA, Díaz R, Sanz F, Allongue P, Morante JR (2000) Charge exchange processes during the open-circuit deposition of Nickel on Silicon from Fluoride solutions. J Electrochem Soc 147:1026–1030CrossRefGoogle Scholar
  46. 46.
    Wang Z, Zhao Z, Qiu J (2008) A general strategy for synthesis of silver dendrites by galvanic displacement under hydrothermal conditions. J Phys Chem Solids 69:1296–1300CrossRefADSGoogle Scholar
  47. 47.
    Shi F, Song Y, Niu J, Xia X, Wang Z, Zhang X (2006) Facile method to fabricate a large-scale superhydrophobic surface by galvanic cell reaction. Chem Mater 18:1365–1368CrossRefGoogle Scholar
  48. 48.
    Yang Y, Meng G (2010) Ag dendritic nanostructures for rapid detection of polychlorinated biphenyls based on surface-enhanced Raman scattering effect. J Appl Phys 107:044315CrossRefADSGoogle Scholar
  49. 49.
    Gutés A, Carraro C, Maboudian R (2010) Silver Dendrites from galvanic displacement on commercial Aluminum foil as an effective SERS substrate. J Am Chem Soc 132:1476–1477CrossRefGoogle Scholar
  50. 50.
    He L, Lin M, Li H, Kim N-J (2009) Surface-enhanced Raman spectroscopy coupled with dendritic silver nanosubstrate for detection of restricted antibiotics. J Raman Spectrosc 41: 739–744Google Scholar
  51. 51.
    Peng KQ et al (2006) Fabrication of single-crystalline Silicon nanowires by scratching a Silicon surface with catalytic metal particles. Adv Funct Mater 16:387–394CrossRefGoogle Scholar
  52. 52.
    Lee H et al (2011) Three-dimensional assembly of nanoparticles from charged aerosols. Nano Lett 11:119–124CrossRefADSGoogle Scholar
  53. 53.
    Feng C, Zhao Y, Jiang Y (2015) Silver nano-dendritic crystal film: a rapid dehydration SERS substrate of totally new concept. RSC Adv 5:4578–4585CrossRefGoogle Scholar
  54. 54.
    Zhao B et al (2016) Silver dendrites decorated filter membrane as highly sensitive and reproducible three dimensional surface enhanced Raman scattering substrates. Appl Surf Sci 387:431–436CrossRefADSGoogle Scholar
  55. 55.
    Qiu T et al (2009) Hot spots in highly Raman-enhancing silver nano-dendrites. J Phys D Appl Phys 42:175403CrossRefADSGoogle Scholar
  56. 56.
    Yin HJ et al (2015) Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate. Sci Rep 5:1–9Google Scholar
  57. 57.
    Yang ZL et al (2010) FDTD for plasmonics: applications in enhanced Raman spectroscopy. Chin Sci Bull 55:2635–2642CrossRefGoogle Scholar
  58. 58.
    Li WH et al (2013) Shape and size control, plasmonic properties, and use as SERS probes and photothermal agents. J Am Chem Soc 135:7098CrossRefGoogle Scholar
  59. 59.
    Etchegoin PG, Le Ru EC (2010) Resolving single molecules in surface-enhanced Raman scattering within the inhomogeneous broadening of Raman peaks. Anal Chem 82:2888–2892CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Dzmitry Yakimchuk
    • 1
    Email author
  • Egor Kaniukov
    • 1
  • Victoria Bundyukova
    • 1
  • Sergey Demyanov
    • 1
  • Vladimir Sivakov
    • 2
  1. 1.Scientific-Practical Materials Research Centre, NAS of BelarusMinskBelarus
  2. 2.Leibniz Institute of Photonic TechnologyJenaGermany

Personalised recommendations