Optical and Electrical Properties of Ferric Chloride Doped Graphene

  • Marian BaahEmail author
  • Tommi Kaplas
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


In this work, we focus on synthesis, transfer and characterization of doped graphene. Growth of single layer graphene on copper foil was done by low-pressure chemical vapor deposition (CVD) technique. In the thermal CVD process, hydrogen was used as a process gas with methane as the carbon precursor. Graphene films were synthesized on Cu foil, which was later etched away. After the transfer, graphene films were doped with chemical dopant using ferric chloride (FeCl3). Furthermore, graphene samples on silica substrates were characterized by Raman spectroscopy, spectrophotometry, scanning electron microscopy and four-point-probe technique. The doping process yielded ∼ 50% decrease in sheet resistance, and no changes in the transmittance or in the Raman spectra of the graphene sample.


Raman spectroscopy Chemical doping SEM Four-point probe 


  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang DA, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefADSGoogle Scholar
  2. 2.
    Geim AK, Novoselov KS (2010) The rise of graphene. Nano Sci Technol A Coll Rev Nat J 1:11–19Google Scholar
  3. 3.
    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314CrossRefADSGoogle Scholar
  4. 4.
    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(8):3087–3087CrossRefADSGoogle Scholar
  5. 5.
    Gao L, Guest JR, Guisinger NP (2010) Epitaxial graphene on Cu (111). Nano Lett 10(9):3512–3516CrossRefADSGoogle Scholar
  6. 6.
    Polat EO, Balci O, Kakenov N, Uzlu HB, Kocabas C, Dahiya R (2015) Synthesis of large area graphene for high performance in flexible optoelectronic devices. Sci Rep 5:16744CrossRefADSGoogle Scholar
  7. 7.
    Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5(8):574CrossRefADSGoogle Scholar
  8. 8.
    Mattevi C, Kim H, Chhowalla M (2011) A review of chemical vapour deposition of graphene on copper. J Mater Chem 21(10):3324–3334CrossRefGoogle Scholar
  9. 9.
    Kaplas T, Bera A, Matikainen A, Pääkkönen P, Lipsanen H (2018) Transfer and patterning of chemical vapor deposited graphene by a multifunctional polymer film. Appl Phys Lett 112(7):073107CrossRefADSGoogle Scholar
  10. 10.
    Bao W, Wan J, Han X, Cai X, Zhu H, Kim D, Ma D, Xu Y, Munday JN, Drew HD, Fuhrer MS (2014) Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nat Commun 5:4224CrossRefADSGoogle Scholar
  11. 11.
    De S, Coleman JN (2010) Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4(5):2713–2720CrossRefGoogle Scholar
  12. 12.
    Zhu SE, Yuan S, Janssen GCAM (2014) Optical transmittance of multilayer graphene. EPL (Europhys Lett) 108(1):17007CrossRefADSGoogle Scholar
  13. 13.
    Kaplas T, Svirko Y, Kuzhir P (2016) Synthesis of Pyrolytic carbon films on dielectric substrates. In: Fundamental and applied nano-electromagnetics \. Springer, Dordrecht, pp 227–238CrossRefGoogle Scholar
  14. 14.
    Kaplas T (2013) Synthesis and optical characterization of Ultrathin carbon films. University of Eastern Finland, JoensuuGoogle Scholar
  15. 15.
    Suzuki S, Takamura M, Yamamoto H (2016) Transmission, reflection, and absorption spectroscopy of graphene microribbons in the terahertz region. Jpn J Appl Phys 55(6S1):06GF08CrossRefGoogle Scholar
  16. 16.
    Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NM, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308–1308CrossRefADSGoogle Scholar
  17. 17.
    Kim J, Cote LJ, Kim F, Huang J (2009) Visualizing graphene based sheets by fluorescence quenching microscopy. J Am Chem Soc 132(1):260–267CrossRefGoogle Scholar
  18. 18.
    Guo B, Fang L, Zhang B, Gong JR (2011) Graphene doping: a review. Insciences J 1(2):80–89CrossRefGoogle Scholar
  19. 19.
    Mak KF, Ju L, Wang F, Heinz TF (2012) Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun 152(15):1341–1349CrossRefADSGoogle Scholar
  20. 20.
    Berashevich J, Chakraborty T (2009) Tunable band gap and magnetic ordering by adsorption of molecules on graphene. Phys Rev B 80(3):033404CrossRefADSGoogle Scholar
  21. 21.
    Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) N-doping of graphene through electrothermal reactions with ammonia. Science 324(5928):768–771CrossRefADSGoogle Scholar
  22. 22.
    Li X, Wang H, Robinson JT, Sanchez H, Diankov G, Dai H (2009) Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131(43):15939–15944CrossRefGoogle Scholar
  23. 23.
    Nigar S, Zhou Z, Wang H, Imtiaz M (2017) Modulating the electronic and magnetic properties of graphene. RSC Adv 7(81):51546–51580CrossRefGoogle Scholar
  24. 24.
    Pinto H, Markevich A (2014) Electronic and electrochemical doping of graphene by surface adsorbates. Beilstein J Nanotechnol 5:1842CrossRefGoogle Scholar
  25. 25.
    Lv R, Terrones M (2012) Towards new graphene materials: doped graphene sheets and nanoribbons. Mater Lett 78:209–218CrossRefGoogle Scholar
  26. 26.
    Das S, Sudhagar P, Kang YS, Choi W (2014) Graphene synthesis and application for solar cells. J Mater Res 29(3):299–319CrossRefADSGoogle Scholar
  27. 27.
    Kumar P, Singh AK, Hussain S, Hui KN, San Hui K, Eom J, Jung J, Singh J (2013) Graphene: synthesis, properties and application in transparent electronic devices. Rev Adv Sci Eng 2:1–21Google Scholar
  28. 28.
    Li X, Colombo L, Ruoff RS (2016) Synthesis of graphene films on copper foils by chemical vapor deposition. Adv Mater 28(29):6247–6252CrossRefGoogle Scholar
  29. 29.
    Campbell SA (2001) The science and engineering of microelectronic fabrication, The Oxford series in electrical and computer engineering. Oxford University Press, New YorkGoogle Scholar
  30. 30.
    Muñoz R, Gómez-Aleixandre C (2013) Review of CVD synthesis of graphene. Chem Vap Depos 19(10–11–12):297–322CrossRefGoogle Scholar
  31. 31.
    Kim SM, Hsu A, Lee YH, Dresselhaus M, Palacios T, Kim KK, Kong J (2013) The effect of copper pre-cleaning on graphene synthesis. Nanotechnology 24(36):365602CrossRefGoogle Scholar
  32. 32.
    Aliofkhazraei M, Milne WI, Ozkan CS, Mitura S, Gervasoni JL, Ali N (2016) Graphene science handbook: size-dependent properties. CRC Press, Boca RatonCrossRefGoogle Scholar
  33. 33.
    Chen Y, Gong XL, Gai JG (2016) Progress and challenges in transfer of large-area Graphene films. Advanced science 3(8):1500343CrossRefGoogle Scholar
  34. 34.
    Fechine GJ, Martin-Fernandez I, Yiapanis G, Bentini R, Kulkarni ES, de Oliveira RVB, Hu X, Yarovsky I, Neto AHC, Oezyilmaz B (2015) Direct dry transfer of chemical vapor deposition graphene to polymeric substrates. Carbon 83:224–231CrossRefGoogle Scholar
  35. 35.
    Liang X, Sperling BA, Calizo I, Cheng G, Hacker CA, Zhang Q, Obeng Y, Yan K, Peng H, Li Q, Zhu X (2011) Toward clean and crackless transfer of graphene. ACS Nano 5(11):9144–9153CrossRefGoogle Scholar
  36. 36.
    De Arco LG, Zhang Y, Kumar A, Zhou C (2009) Synthesis, transfer, and devices of single-and few-layer graphene by chemical vapor deposition. IEEE Trans Nanotechnol 8(2):135–138CrossRefADSGoogle Scholar
  37. 37.
    Regan W, Alem N, Alemán B, Geng B, Girit Ç, Maserati L, Wang F, Crommie M, Zettl A (2010) A direct transfer of layer-area graphene. Appl Phys Lett 96(11):113102CrossRefADSGoogle Scholar
  38. 38.
    ALLRESIST, Innovation, Creativity, Customer-specific solutions (2014). . Accessed 28 Aug 2018
  39. 39.
    Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8(4):235CrossRefADSGoogle Scholar
  40. 40.
    Binder J, Urban JM, Stepniewski R, Strupinski W, Wysmolek A (2015) In situ Raman spectroscopy of the graphene/water interface of a solution-gated field-effect transistor: electron–phonon coupling and spectroelectrochemistry. Nanotechnology 27(4):045704CrossRefADSGoogle Scholar
  41. 41.
    Marshall CP, Edwards HG, Jehlicka J (2010) Understanding the application of Raman spectroscopy to the detection of traces of life. Astrobiology 10(2):229–243CrossRefADSGoogle Scholar
  42. 42.
    Grigoryeva M (2014) Reducing contact resistance in graphene devices. Accessed 14 Mar 2019
  43. 43.
    Hasegawa S, Grey F (2002) Electronic transport at semiconductor surfaces––from point-contact transistor to micro-four-point probes. Surf Sci 500(1–3):84–104ADSGoogle Scholar
  44. 44.
    Parvez K, Li R, Müllen K (2015) Graphene as transparent electrodes for solar cells. In: Nanocarbons for advanced energy conversion, vol 2. Wiley, HobokenGoogle Scholar
  45. 45.
    Kim KK, Reina A, Shi Y, Park H, Li LJ, Lee YH, Kong J (2010) Enhancing the conductivity of transparent graphene films via doping. Nanotechnology 21(28):285205CrossRefADSGoogle Scholar
  46. 46.
    Gunes F, Shin HJ, Biswas C, Han GH, Kim ES, Chae SJ, Choi JY, Lee YH (2010) Layer-by-layer doping of few-layer graphene film. ACS Nano 4(8):4595–4600CrossRefGoogle Scholar
  47. 47.
    Hafner B (2007) Scanning electron microscopy primer. Characterization facility, University of Minnesota-Twin Cities, pp 1–29Google Scholar
  48. 48.
    Goldstein J (ed) (2012) Practical scanning electron microscopy: electron and ion microprobe analysis. ACS Publications, SpringerGoogle Scholar
  49. 49.
    Abdou MS, Holdcroft S (1996) Gold-decorated poly (3-alkylthiophenes). Chem Mater 8(1):26–31CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Photonics, University of Eastern FinlandJoensuuFinland

Personalised recommendations