Peculiarities of Formation and Characterization of SiO2/Si Ion-Track Template

  • Egor KaniukovEmail author
  • Victoria Bundyukova
  • Maksim Kutuzau
  • Dzmitry Yakimchuk
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


A simple way of forming porous templates of silicon dioxide using ion-track technology was demonstrated. Investigations of the dependence of the characteristics, both of a single pore and of the entire template on the etching time and concentration of etchant were carried out. The possibility of high-precision control of the parameters of porous templates through the post-processing of SEM images in the ImageJ software was demonstrated. An express method for estimating template parameters using ellipsometry was proposed.


Nanotechnology Templates Swift heavy ion track technology ImageJ Ellipsometry 



The authors acknowledge the support of the work in frames of H2020 – MSCA – RISE2017 – 778308 – SPINMULTIFILM Project, the Scientific-technical program ‘Technology-SG’ [project number], and Belarusian Foundation for Basic Research [project number Ф17М-005].


  1. 1.
    Xu D, Xu Y, Chen D, Guo G, Gui L, Tang Y (2000) Preparation of CdS single-crystal nanowires by electrochemically induced deposition. Adv Mater 12:520–522CrossRefGoogle Scholar
  2. 2.
    Yakimchuk D et al (2018) Silver nanostructures evolution in porous SiO2/p-Si matrices for wide wavelength surface-enhanced Raman scattering applications. MRS Commun 8:95–99CrossRefGoogle Scholar
  3. 3.
    Sun L, Hao Y, Chien C-L, Searson PC (2005) Tuning the properties of magnetic nanowires. IBM J Res Dev 49:79–102CrossRefGoogle Scholar
  4. 4.
    Demyanov S, Kaniukov E, Petrov A, Sivakov V (2014) Positive magnetoresistive effect in Si/SiO2(Cu/Ni) nanostructures. Sensors Actuators A Phys 216:64–68CrossRefGoogle Scholar
  5. 5.
    Fink D et al (2005) High energy ion beam irradiation of polymers for electronic applications. Nucl Instrum Methods Phys Res Sect B 236:11–20CrossRefADSGoogle Scholar
  6. 6.
    Nishiyama H, Mizoshiri M, Hirata Y, Nishii J (2011) Hybrid microlens structures using femtosecond laser nonlinear lithography. IOP Conf Ser Mater Sci Eng 18:1–4CrossRefGoogle Scholar
  7. 7.
    Fink D et al (2004) Etched ion tracks in silicon oxide and silicon oxynitride as charge injection or extraction channels for novel electronic structures. Nucl Instrum Methods Phys Res Sect B 218:355–361CrossRefADSGoogle Scholar
  8. 8.
    Kaniukov EY, Shumskaya EE, Yakimchuk DV, Kozlovskiy AL, Ibragimova MA, Zdorovets MV (2017) Evolution of the polyethylene terephthalate track membranes parameters at the etching process. J Contemp Phys (Armenian Acad Sci) 52:155–160CrossRefADSGoogle Scholar
  9. 9.
    Dallanora A et al (2008) Nanoporous SiO2/Si thin layers produced by ion track etching: dependence on the ion energy and criterion for etchability. J Appl Phys 104:024307–1-024307-8CrossRefADSGoogle Scholar
  10. 10.
    Giorgis F et al (2008) Porous silicon as efficient surface enhanced Raman scattering (SERS) substrate Appl. Surf Sci 254:7494–7497CrossRefADSGoogle Scholar
  11. 11.
    Bandarenka H, Artsemyeva K, Redko S, Panarin A, Terekhov S, Bondarenko V (2013) Effect of swirl-like resistivity striations in n+−type Sb doped Si wafers on the properties of Ag/porous silicon SERS substrates. Phys Status Solidi 10:624–627CrossRefGoogle Scholar
  12. 12.
    Kozlovskiy AL et al (2017) Comprehensive study of Ni Nanotubes for bioapplications: from synthesis to payloads attaching. J Nanomater 2017:1–9CrossRefGoogle Scholar
  13. 13.
    Korolkov IV et al (2017) The effect of oxidation pretreatment of polymer template on the formation and catalytic activity of Au/PET membrane composites. Chem Pap 71:2353–2358CrossRefGoogle Scholar
  14. 14.
    Kaniukov E et al (2017) Growth mechanisms of spatially separated copper dendrites in pores of a SiO 2 template. Philos Mag 6435:1–16Google Scholar
  15. 15.
    Kaniukov E, Kozlovsky A, Shlimas D, Yakimchuk D, Zdorovets M, Kadyrzhanov K (2016) Tunable synthesis of copper nanotubes. IOP Conf Ser Mater Sci Eng 110:012013CrossRefGoogle Scholar
  16. 16.
    Bercu B, Enculescu I, Spohr R (2004) Copper tubes prepared by electroless deposition in ion track templates. Nucl Instrum Methods Phys Res Sect B 225:497–502CrossRefADSGoogle Scholar
  17. 17.
    Sivakov V et al (2014) Silver nanostructures formation in porous Si/SiO2 matrix. J Cryst Growth 400:21–26CrossRefADSGoogle Scholar
  18. 18.
    Weeks RA (1956) Paramagnetic resonance of lattice defects in irradiated quartz. J Appl Phys 27:1376–1381CrossRefADSGoogle Scholar
  19. 19.
    Holzenkampfeer E, Richter FW, Stuke J, Voget-Grote U (1979) Electron spin resonance and hoping conductivity of a-SiOx. J Non-Cryst Solids 32:327–338CrossRefADSGoogle Scholar
  20. 20.
    Mazzoldi P et al (1991) N and Ar ionimplantation effects in SiO2 films on Si sigleccrystal substrates. J Appl Phys 70:3528–3536CrossRefADSGoogle Scholar
  21. 21.
    Trautmann C, Bouffard S, Spohr R (1996) Etching threshold for ion tracks in polyimide. Nucl Instrum Methods Phys Res Sect B 116:429–433CrossRefADSGoogle Scholar
  22. 22.
    Awazu K, Kawazoe H (2003) Strained Si-O-Si bonds in amorphous SiO2 materials: a family member of active centers in radio, photo, and chemical responses. J Appl Phys 94:6243–6262CrossRefADSGoogle Scholar
  23. 23.
    Toulemonde M, Enault N, Fan JY, Studer F (1990) Does continuous trail of damage appear at the change in the electronic stopping power damage rate? J Appl Phys 68:1545–1549CrossRefADSGoogle Scholar
  24. 24.
    Toulemonde M, Bouffard S, Studer F (1994) Swift heavy ions in insulating and conducting oxides: tracks and physical properties. Nucl Instrum Methods Phys Res Sect B 91:108–123CrossRefADSGoogle Scholar
  25. 25.
    Kaniukov EY et al (2016) Tunable nanoporous silicon oxide templates by swift heavy ion tracks technology. Nanotechnology 27:115305CrossRefADSGoogle Scholar
  26. 26.
    Fujiwara H (2007) Spectroscopic ellipsometry. Wiley, ChichesterCrossRefGoogle Scholar
  27. 27.
    Moreau WM (1988) Semiconductor lithography: principles, practices, and materials. Springer, New York, p 1988CrossRefGoogle Scholar
  28. 28.
    Verhaverbeke S (1994) The etching mechanisms of SiO2 in Hydrofluoric acid. J Electrochem Soc 141:2852–2857CrossRefGoogle Scholar
  29. 29.
    Milanez SC, Varisco P, Moehlecke A, Fichtner PP, Papaléo RM, Eriksson J (2003) Processing of nano-holes and pores on SiO2 thin films by MeV heavy ions. Nucl Instrum Methods Phys Res Sect B 206:486–489CrossRefADSGoogle Scholar
  30. 30.
    Zhang WM et al (2008) Study of etched ion track profiles in silicon dioxide membrane. Radiat Meas 43:S627–S631CrossRefGoogle Scholar
  31. 31.
    Bergamini F, Bianconi M, Cristiani S (2007) Wet and vapor etching of tracks produced in SiO2 by Ti ion irradiation. Nucl Instrum Methods Phys Res Sect B 257:593–596CrossRefADSGoogle Scholar
  32. 32.
    Rotaru CCS (2004) Stanescu SiO2 sur silicium: comportement sous irradiation avec des ions lourds, Universite de Caen.Google Scholar
  33. 33.
    Knotter DM (2000) Etching mechanism of vitreous silicon dioxide in HF-based solutions. J Am Chem Soc 122:4345–4351CrossRefGoogle Scholar
  34. 34.
    Yang Yu B, Elbuken C, Ren CL, Huissoon JP (2011) Image processing and classification algorithm for yeast cell morphology in a microfluidic chip. J Biomed Opt 16:066008CrossRefGoogle Scholar
  35. 35.
    Bundyukova V, Yakimchuk D, Shumskaya E, Smirnov A, Yarmolich M, Kaniukov E (2019a) Post-processing of SiO2/Si ion-track template images for pores parameters analysis. Mater Today Proc 7:828–834. CrossRefGoogle Scholar
  36. 36.
    Yakimchuk D, Bundyukova V, Smirnov A, Kaniukov E (2019) Express method of estimation of etched ion track parameters in silicon dioxide template. Phys Status Solidi B 256:1800316. CrossRefADSGoogle Scholar
  37. 37.
    Bundyukova V, Kaniukov E, Shumskaya A, Smirnov A, Kravchenko M, Yakimchuk D (2019b) Ellipsometry as an express method for determining the pore parameters of ion-track SiO2 templates on a silicon substrate. EPJ Web Conf 201:01001. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Egor Kaniukov
    • 1
    • 2
    Email author
  • Victoria Bundyukova
    • 1
  • Maksim Kutuzau
    • 1
  • Dzmitry Yakimchuk
    • 1
  1. 1.Scientific-Practical Materials Research Centre, NAS of BelarusMinskBelarus
  2. 2.Institute of Chemistry of New Materials, NAS of BelarusMinskBelarus

Personalised recommendations