Electrophysical Properties of Sr2FeMoO6–δ Ceramics with Dielectric Shells

  • Nikolay KalandaEmail author
  • Marta Yarmolich
  • Sergey Demyanov
  • Alexander Petrov
  • Vasil M. Garamus
  • Herman Terryn
  • Jon Ustarroz
  • Nikolai A. Sobolev
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


Magnetic metal-oxide compounds with high magnetoresistance (MR) values have attracted an extraordinary interest of researchers and engineers due to their possible spintronic applications. Among these materials, the strontium ferromolybdate Sr2FeMoO6–δ (SFMO) has been relatively less known compared to cobaltites and manganites despite its 100% spin polarization of the conduction electrons and a high Curie temperature. In the present chapter, a stable fabrication technology and a systematic analysis of nanocomposites consisting of SFMO grains with SrMoO4 (SMO) dielectric shells are presented. SFMO-SMO nanocomposites were fabricated as follows: synthesis of the SFMO single-phase nanopowders by a modified citrate-gel technique; compaction under high pressure; thermal treatment for the formation of dielectric shells on the grain surface. The nanocomposite exhibits a transitional behavior of the conductivity type from metallic, which is characteristic of the SFMO, to semiconducting in the temperature range from 4 to 300 K in applied magnetic fields up to 10 T. A negative MR is observed due to the tunneling of spin-polarized charge carriers through dielectric interlayers. The MR value reaches 43% in a field of 8 Т at 10 K. The dielectric shell thickness was determined to be about 10 nm from the electrical breakdown voltage on the current-voltage characteristics. The observed electrical breakdown is found to be a reversible process determined by the impact ionization of atoms in the dielectric in strong electric fields depending on the electrons knocked-out from SrMoO4. It was found that the MR changes the sign from negative to positive in the electrical breakdown region, revealing giant MR properties.


Strontium ferromolybdate Ferrimagnetic Sol-gel synthesis Dielectric shells Electrical resistivity Tunneling magnetoresistance 



This work was supported by the Deutsche Forschungsgemeinschaft (DFG) Project No. MA 2359/30-1, by the European project H2020-MSCA-RISE-2017-778308 – SPINMULTIFILM, and by the FCT of Portugal through the project I3N/FSCOSD (Ref. FCT UID/CTM/50025/2013).


  1. 1.
    Serrate D, De Teresa JM, Ibarra MR (2007) Double perovskites with ferromagnetism above room temperature. J Phys Condens Matter 19:1Google Scholar
  2. 2.
    Topwal D, Sarma DD, Kato H, Tokura Y, Avignon M (2006) Structural and magnetic properties of Sr2Fe1+xMo1−xO6 (−1<x<0.25). Phys Rev B 73:0944191CrossRefGoogle Scholar
  3. 3.
    Chan TS, Liu RS, Hu SF, Lin JG (2005) Structure and physical properties of double perovskite compounds Sr2FeMO6 (M = Mo, W). Mater Chem Phys 93:314CrossRefGoogle Scholar
  4. 4.
    Rager J, Zipperle M, Sharma A, MacManus-Driscoll JL (2004) Oxygen Stoichiometry in Sr2FeMoO6, the determination of Fe and Mo valence states, and the chemical phase diagram of SrO – Fe3O4 – MoO3. J Am Ceram Soc 87:1330CrossRefGoogle Scholar
  5. 5.
    Kanchana V, Vaitheeswaran G, Alouani M, Delin A (2007) Electronic structure and x-ray magnetic circular dichroism of Sr2FeMoO6: Ab initio calculations. Phys Rev B 75:220404CrossRefADSGoogle Scholar
  6. 6.
    Szotek Z, Temmerman WM, Svane A, Petit L, Winter H (2003) Electronic structure of half-metallic double perovskites. Phys Rev B 68:104411CrossRefADSGoogle Scholar
  7. 7.
    Sarma DD (2001) A new class of magnetic materials: Sr2FeMoO6 and related compounds. Curr Opin Solid State Mater Sci 5:261CrossRefADSGoogle Scholar
  8. 8.
    Kobayashi KI, Kimura T, Sawada H, Terakura K, Tokura Y (1998) Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 395:677CrossRefADSGoogle Scholar
  9. 9.
    Jurca B, Berthon J, Dragoe N, Berthet P (2009) Influence of successive sintering treatments on high ordered Sr2FeMoO6 double perovskite properties. J Alloys Compd 474:416CrossRefGoogle Scholar
  10. 10.
    Fang T-T, Lin J-C (2005) Formation kinetics of Sr2FeMoO6 double perovskite. J Mater Sci 40:683CrossRefADSGoogle Scholar
  11. 11.
    Klencsár Z, Németh Z, Vértes A, Kotsis I, Nagy M, Cziráki Á, Ulhaq-Bouillet C, Pierron-Bohnes V, Vad K, Mészáros S, Hakl J (2004) The effect of cation disorder on the structure of Sr2FeMoO6 double perovskite. J Magn Magn Mater 281:115CrossRefADSGoogle Scholar
  12. 12.
    Ibarra MR, de Teresa JM (1998) Colossal magnetoresistance in manganese oxide perovskites. J Magn Magn Mater 177:846CrossRefADSGoogle Scholar
  13. 13.
    Fix T, Barla A, Ulhaq-Bouillet C, Colis S, Kappler JP, Dinia A (2007) Absence of tunnel magnetoresistance in Sr2FeMoO6-based magnetic tunnel junctions. Chem Phys Lett 434:276CrossRefADSGoogle Scholar
  14. 14.
    Yuan CL, Zhu Y, Ong PP, Ong CK, Yu T, Shen ZX (2003) Grain boundary effects on the magneto-transport properties of Sr2FeMoO6 induced by variation of the ambient H2–Ar mixture ratio during annealing. Physica B Condens Matt 334:408CrossRefADSGoogle Scholar
  15. 15.
    Raittila J, Salminen T, Suominen T, Schlesier K, Paturi P (2006) Nanocrystalline Sr2FeMoO6 prepared by citrate-gel method. J Phys Chem Solids 67:1712CrossRefADSGoogle Scholar
  16. 16.
    Li XH, Sun YP, Li WJ, Ang R, Zhang SB, Zhu XB, Song WH, Dai JM (2008) Size dependence of electronic and magnetic properties of double perovskite Sr2FeMoO6. Solid State Commun 145:98CrossRefADSGoogle Scholar
  17. 17.
    Yuan CL, Wang SG, Song WH, Yu T, Dai JM, Ye SL, Sun YP (1999) Enhanced intergrain tunneling magnetoresistance in double perovskite Sr2FeMoO6 polycrystals with nanometer-scale particles. Appl Phys Lett 75:3853CrossRefADSGoogle Scholar
  18. 18.
    Nakayama S, Nakagawa T, Nomura S (1968) Neutron diffraction study of Sr2(FeMo)O6. J Phys Soc Jpn 24:219CrossRefADSGoogle Scholar
  19. 19.
    Kumar D, Kaur D (2011) Exchange biasing in SFMO/SFWO double perovskite multilayer thin films. J Alloys Compd 509:7886CrossRefGoogle Scholar
  20. 20.
    Sui Y, Wang XJ, Quan ZN, Liu ZG, Miao JP, Cheng JG, Huang XQ, Lu Z, Su WH, Ong CK (2005) Influence of doping Al on the magnetoresistance of polycrystalline Sr2FeMoO6. J Magn Magn Mater 290–291:1089CrossRefADSGoogle Scholar
  21. 21.
    Aloysiusa RP, Dhankhar M, Kotnala RK (2013) Enhanced low field magnetoresistance in Sr2Fe1−xAgxMoO6 double perovskite system. J Alloys Compd 574:335CrossRefGoogle Scholar
  22. 22.
    Wang J-F, Hu B, Zhang J, Gu Z-B, Zhang ST (2015) Enhanced low-field magnetoresistance in organic/inorganic glycerin. J Alloys Compd 621:131CrossRefGoogle Scholar
  23. 23.
    Cibert J, Bobo J-F, Lüders U (2005) Development of new materials for spintronics. CR Physique 6:977CrossRefADSGoogle Scholar
  24. 24.
    Huang YH, Lindén J, Yamauchi H, Karppinen M (2005) Large low-field magnetoresistance effect in Sr2FeMoO6 homocomposites. Appl Phys Lett 87:0725101Google Scholar
  25. 25.
    Tai LW, Lessing PA (1992) Modified resin-intermediate processing of perovskite powders. Part II. Processing for fine, nonagglomerated Sr-doped lanthanum chromite powders. J Mater Res 7:511CrossRefADSGoogle Scholar
  26. 26.
    Yarmolich M, Kalanda N, Demyanov S, Terryn H, Ustarroz J, Silibin M, Gorokh G (2016a) Influence of synthesis conditions on microstructure and phase transformations of annealed Sr2FeMoO6–δ nanopowders formed by citrate-gel method. Beilstein J Nanotechnol 7:1202CrossRefGoogle Scholar
  27. 27.
    Yarmolich M, Kalanda N, Demyanov S, Fedotova J, Bayev V, Sobolev NA (2016) Charge ordering and magnetic properties in nanosized Sr2FeMoO6–δ powders. Phys Status Solidi B Basic Solid State Phys 253:2160CrossRefADSGoogle Scholar
  28. 28.
    Fang T-T, Lin J-C (2005) Formation kinetics of Sr2FeMoO6 double perovskite. J Mater Sci 40:683CrossRefADSGoogle Scholar
  29. 29.
    Yarmolich MV, Kalanda NA, Demyanov SE, Silibin MV, Gorokh GG (2016) Synthesis and study of strontium ferromolybdate nanopowders with high degree of superstructural ordering for spintronics. TKEA 2-3:41Google Scholar
  30. 30.
    Kovalev LV, Yarmolich MV (2014) The influence of synthesis conditions on structural and magneto-transport propertis of Sr2FeMoO6-δ. Proc Natl Acad Sci Belarus (physical-technical sciences series) 1:46Google Scholar
  31. 31.
    Yarmolich MV, Kalanda NA (2016) Charge ordering in a compound of Sr2FeMoO6-δ, synthesized by citrate-gel method. Supplement to the journal “Proc National Acad Sci Belarus” (physical-technical sciences series) 4:80Google Scholar
  32. 32.
    Yarmolich MV, Kalanda NA, Demyanov SE, Hurski LI, Kovalev LV, Galyas AI (2016) Magnetism in the nanosized strontium ferromolybdate. Doklady BGUIR 3:63Google Scholar
  33. 33.
    Gittlman JL, Goldstain Y, Bozovski S (1972) Magnetic properties of granular nickel films. Phys Rev B 5:3609CrossRefADSGoogle Scholar
  34. 34.
    Milner A, Gerber A, Groisman B, Karpovsky M, Gladkikh A (1996) Spin-dependent electronic transport in granular ferromagnets. Phys Rev Lett 76:475CrossRefADSGoogle Scholar
  35. 35.
    Boltaev AP, Pudonin FA, Sherstnev A (2011) Specific features of the magnetoresistance in multilayer systems of magnetic nanoislands in weak magnetic fields. Phys Solid State 53:950CrossRefADSGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Nikolay Kalanda
    • 1
    Email author
  • Marta Yarmolich
    • 1
  • Sergey Demyanov
    • 1
  • Alexander Petrov
    • 1
  • Vasil M. Garamus
    • 2
  • Herman Terryn
    • 3
  • Jon Ustarroz
    • 3
  • Nikolai A. Sobolev
    • 4
  1. 1.Scientific-Practical Materials Research Centre, NAS of BelarusMinskBelarus
  2. 2.Helmholtz-Zentrum Geesthacht: Centre for Materials and Coastal ResearchGeesthachtGermany
  3. 3.Vrije Universiteit BrusselBrusselsBelgium
  4. 4.Departamento de Fsica and I3N, Universidade de AveiroAveiroPortugal

Personalised recommendations