Advertisement

Terahertz Applications of Non-Simply-Connected and Helical Nanostructures

  • Thomas P. Collier
  • Vasil A. Saroka
  • Charles A. Downing
  • Arseny M. Alexeev
  • Richard R. Hartmann
  • Mikhail E. PortnoiEmail author
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

We outline a range of proposals on using non-simply-connected and helical nanostructures for terahertz device implementations. We show that an Aharonov-Bohm quantum ring system and a double-gated quantum ring system both permit control over the polarization properties of the associated terahertz radiation. In addition, we review the superlattice properties of a nanohelix in external electric fields, which reveals negative differential conductance and photogalvanic effects. We present several schemes utilizing carbon nanotubes, including population inversion proposals for both quasi-metallic nanotubes (via generation of optically active hot electrons by an electric field), and metallic nanotubes (by optical excitation across a magnetic field-induced band gap).

Keywords

Quantum rings Nanohelices Carbon nanotubes Graphene Nano-electronics Nano-electromаgnetics Terahertz range 

Notes

Acknowledgements

We would like to acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom, via the EPSRC Centre for Doctoral Training in Metamaterials XM2 (Grant No. EP/L015331/1). The work was also financially supported by the EU H2020 RISE project CoExAN (Grant No. H2020-644076) and by the Government of the Russian Federation through the ITMO Fellowship and Professorship Program.

References

  1. 1.
    Siegel PH (2002) IEEE Trans Microwave Theory Technol 50:910CrossRefADSGoogle Scholar
  2. 2.
    Ferguson B, Zhag XC (2002) Nat Mater 1:26CrossRefADSGoogle Scholar
  3. 3.
    Tonouchi M (2007) Nat Photonics 1:97CrossRefADSGoogle Scholar
  4. 4.
    Alexeev AM, Portnoi ME (2012) Phys Rev B 85:245419CrossRefADSGoogle Scholar
  5. 5.
    Alexeev AM, Portnoi ME (2012) Phys Status Solidi C 9:1309CrossRefADSGoogle Scholar
  6. 6.
    Alexeev AM, Shelykh IA, Portnoi ME (2013) Phys Rev B 88:085429CrossRefADSGoogle Scholar
  7. 7.
    Collier TP, Saroka VA, Portnoi ME (2017) Phys Rev B 96:235430CrossRefADSGoogle Scholar
  8. 8.
    Kibis OV, Malevannyy SV, Huggett L, Parfitt DGW, Portnoi ME (2005) Electromagnetics 25:425CrossRefGoogle Scholar
  9. 9.
    Kibis OV, Parfitt DGW, Portnoi ME (2005) Phys Rev B 71:035411CrossRefADSGoogle Scholar
  10. 10.
    Downing CA, Robinson MG, Portnoi ME (2016) Phys Rev B 94:155306CrossRefADSGoogle Scholar
  11. 11.
    Portnoi ME, Kibis OV, da Costa MR (2008) Superlattice Microst 43:399CrossRefADSGoogle Scholar
  12. 12.
    Portnoi ME, da Costa MR, Kibis OV, Shelykh IA (2009) Int J Mod Phys B 23:2846CrossRefADSGoogle Scholar
  13. 13.
    Hartmann RR, Kono J, Portnoi ME (2014) Nanotechnology 25:322001CrossRefGoogle Scholar
  14. 14.
    (2018) Physics of quantum rings (2nd ed). Nanoscience and technology, by V. Fomin. Springer, ChamGoogle Scholar
  15. 15.
    Ehrenberg W, Siday RE (1949) Proc Phys Soc London, Sect B 62:8CrossRefADSGoogle Scholar
  16. 16.
    Aharonov Y, Bohm D (1959) Phys Rev 115:485MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    Lorke A, Luyken RJ, Govorov AO, Kotthaus JP, Garcia JM, Petroff PM (2000) Phys Rev Lett 84:2223CrossRefADSGoogle Scholar
  18. 18.
    Ribeiro E, Govorov AO, Carvalho W Jr, Medeiros-Riberio G (2004) Phys Rev Lett 92:126402CrossRefADSGoogle Scholar
  19. 19.
    Ren Z, Gao P–X (2014) Nanoscale 6:9366CrossRefADSGoogle Scholar
  20. 20.
    Vorobyova JS, Vorobes AB, Prinz VY, Toropov AI, Maude DK (2015) Nano Lett 15:1673CrossRefADSGoogle Scholar
  21. 21.
    Physical properties of carbon nanotubes, by R. Saito, G. Dresselhaus, M. S. Dresselhaus (Imperial College Press, London, 1998)Google Scholar
  22. 22.
    Park J-Y, Rosenblatt S, Yaish Y, Sazanova V, Üstünel H, Braig S, Arias TA, Brouwer PW, McEuen PL (2004) Nano Lett 4:517CrossRefADSGoogle Scholar
  23. 23.
    Zhang R, Zhang Y, Wei F (2017) Chem Soc Rev 46:3661CrossRefGoogle Scholar
  24. 24.
    Shahnazaryan V, Saroka VA, Shelykh IA, Portnoi ME (2017) arXiv 1710:02764 Google Scholar
  25. 25.
    Ren L, Pint CL, Booshehri LG, Rice WD, Wang X, Hilton DJ, Takeya K, Kawayama I, Tonouchi M, Hauge RH, Kono J (2009) Nano Lett 9:2610CrossRefADSGoogle Scholar
  26. 26.
    Ren L, Pint CL, Arikawa T, Takeya K, Kawayama I, Tonouchi M, Hauge RH, Kono J (2012) Nano Lett 12:787CrossRefADSGoogle Scholar
  27. 27.
    Titova LV, Pint CL, Zhang Q, Hauge RH, Kono J, Hegmann FA (2015) Nano Lett 15:3267CrossRefADSGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Thomas P. Collier
    • 1
  • Vasil A. Saroka
    • 2
  • Charles A. Downing
    • 3
  • Arseny M. Alexeev
    • 1
  • Richard R. Hartmann
    • 4
  • Mikhail E. Portnoi
    • 1
    Email author
  1. 1.School of PhysicsUniversity of ExeterExeterUK
  2. 2.Institute for Nuclear ProblemsBelarusian State UniversityMinskBelarus
  3. 3.Department of Theoretical PhysicsUniversidad Autonoma de MadridMadridSpain
  4. 4.Physics DepartmentDe La Salle UniversityManilaPhilippines

Personalised recommendations