Carbon-Based Terahertz Resonant Antennas

  • Antonio MaffucciEmail author
  • Sergey A. Maksimenko
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


Given their fascinating properties, carbon nanomaterials are currently proposed for the realization of devices working in the terahertz range, overcoming the limits of the conventional materials. Several types of devices have been proposed, designed, and theoretically studied, based on different physical phenomena observed in such materials. In this Chapter, we review the state of the art of the study on THz resonant antennas, based on features of the propagation of the surface plasmon polaritons.


Carbon nanotubes Graphene Nanoelectronics Nanoelectromаgnetics Plasmon resonances Terahertz range 


  1. 1.
    Siegel PH (2002) Terahertz technology. IEEE Trans Microwave Theory Tech 50:910–928CrossRefADSGoogle Scholar
  2. 2.
    Ferguson B, Zhang XC (2002) Materials for terahertz science and technology. Nature Materials 1:26–33CrossRefADSGoogle Scholar
  3. 3.
    Kiyomi S (2005) Terahertz optoelectronics. Springer, BerlinGoogle Scholar
  4. 4.
    Dhillon SS et al (2017) The 2017 terahertz science and technology roadmap. J Phys D: Appl Phys 50:043001CrossRefADSGoogle Scholar
  5. 5.
    Neil GR (2014) Accelerator sources for THz science: A Review. J Infrared Millimeter and Terahertz Waves 35:5–16CrossRefGoogle Scholar
  6. 6.
    Ganichev SD, Prettl W (2006) Intense terahertz excitation of semiconductors. Oxford University Press, OxfordGoogle Scholar
  7. 7.
    Lee GM, Wanke MC (2007) Searching for a solid-state terahertz technology. Science 316: 64–65CrossRefGoogle Scholar
  8. 8.
    Nagatsuma T, Ducournau G, Renaud CC (2016) Advances in terahertz communications accelerated by photonics. Nature Photonics 10:371–379CrossRefADSGoogle Scholar
  9. 9.
    Vitello MS, Scalari G, Williams B, De Natale P (2015) Quantum cascade lasers: 20 years of challenges. Optics Express 23:5167–5182CrossRefADSGoogle Scholar
  10. 10.
    Rotter S, Gigan S (2017) Light fields in complex media: Mesoscopic scattering meets wave control. Rev Mod Phys 89:015005CrossRefADSGoogle Scholar
  11. 11.
    Xiang ZL, Ashhab S, You JQ, Nori F (2013) Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev Mod Phys 85:623–653CrossRefADSGoogle Scholar
  12. 12.
    Ritsch H, Domokos P, Brennecke F, Esslinger T (2013) Cold atoms in cavity-generated dynamical optical potentials. Rev Mod Phys 85:553–601CrossRefADSGoogle Scholar
  13. 13.
    Slepyan GY, Boag A, Mordachev V, Sinkevich E, Maksimenko S, Kuzhir P, Miano G, Portnoi ME, Maffucci A (2017) Anomalous electromagnetic coupling via entanglement at the nanoscale. New J Phys 19:023014CrossRefGoogle Scholar
  14. 14.
    Gabelli J, Fèeve G, Berroir J-M, Placais B (2012) A coherent RC circuit. Rep Prog Phys 75:126504CrossRefADSGoogle Scholar
  15. 15.
    Kavokin AV, Shelykh IA, Taylor T, Glazov MM (2012) Vertical cavity surface emitting terahertz laser. Phys Rev B 108:197401ADSGoogle Scholar
  16. 16.
    Hartmann RR, Kono J, Portnoi ME (2014) Terahertz science and technology of carbon nanomaterials. Nanotechnology 25:322001CrossRefGoogle Scholar
  17. 17.
    Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nature Nanotechn 2: 605–615CrossRefADSGoogle Scholar
  18. 18.
    Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162CrossRefADSGoogle Scholar
  19. 19.
    Hanson GW (2005) Fundamental transmitting properties of carbon nanotube antennas. IEEE Trans. Antennas Prop. 53:3426–3435CrossRefADSGoogle Scholar
  20. 20.
    Li H, Xu C, Srivastava N, Banerjee K (2009) Carbon nanomaterials for next-generation interconnects and passives: Physics, status, and prospects. IEEE Trans. Electron Dev. 56:1799–1821CrossRefADSGoogle Scholar
  21. 21.
    Chen X, Akinwande D, Lee K-J, Close GF, Yasuda S, Paul BC, Fujita S, Kong J, Wong HSP (2010) Fully integrated graphene and carbon nanotube interconnects for gigahertz high-speed CMOS electronics. IEEE Trans. Electr. Devices 57:3137–3143CrossRefADSGoogle Scholar
  22. 22.
    Valitova I, Amato M, Mahvash F, Cantele G, Maffucci A, Santato C, Martel R, Cicoira F (2013) Carbon nanotube electrodes in organic transistors. Nanoscale 5:4638–4646CrossRefADSGoogle Scholar
  23. 23.
    Todri-Sanial A, Dijon J, Maffucci A (2016) Carbon nanotubes for interconnects: Process, design and applications. Springer, Cham, The NetherlandsGoogle Scholar
  24. 24.
    Li B et al (2010) All-carbon electronic devices fabricated by directly grown single-walled carbon nanotubes on reduced graphene oxide electrodes. Adv Materials 22:3058–3061CrossRefGoogle Scholar
  25. 25.
    Srivastava A, Marulanda JM, Xu Y, Sharma A (2015) Carbon-based electronics: transistors and interconnects at the nanoscale. Pan Stanford Publishing, SingaporeCrossRefGoogle Scholar
  26. 26.
    Morris J (2018) Nanopackaging, Nanotechnologies and Electronics Packaging. Springer International Publishing, ChamCrossRefGoogle Scholar
  27. 27.
    Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nature Photonics 4:611–622CrossRefADSGoogle Scholar
  28. 28.
    Zalevsky Z, Abdulhalim I (2014) Integrated nanophotonic devices. Elsevier B.V, OxfordGoogle Scholar
  29. 29.
    García de Abajo FJ (2013) Applied physics. Graphene nanophotonics. Science 339:917–918CrossRefADSGoogle Scholar
  30. 30.
    Kuzhir P, Paddubskaya A, Valynets NI, Batrakov KG (2017) Main principles of passive devices based on graphene and carbon films in microwave—THz frequency range. J Nanophotonics 11:032504CrossRefADSGoogle Scholar
  31. 31.
    Batrakov K, Kibis OV, Kuzhir P, Rosenau da Costa M, Portnoi ME (2010) Terahertz processes in carbon nanotubes. J Nanophotonics 4:041665CrossRefADSGoogle Scholar
  32. 32.
    Correas-Serrano D, Gomez-Diaz JS, Perruisseau-Carrier J, Alvarez-Melcon A (2014) Graphene-based plasmonic tunable low-pass filters in the terahertz band. IEEE Trans Nanotechn 13:1145–1153CrossRefADSGoogle Scholar
  33. 33.
    Forestiere C, Maffucci A, Miano G (2010) Hydrodynamic model for the signal propagation along carbon nanotubes. Journal of Nanophotonics 4:041695. /1-20CrossRefADSGoogle Scholar
  34. 34.
    Brun C, Wei TC, Franck P, Chong YC, Congxiang L, Leong CW, Tan D, Kang TB, Coquet P, Baillargeat D (2015) Carbon nanostructures dedicated to millimeter-wave to THz interconnects. IEEE Trans Terahertz Sci Techn 5:383–390CrossRefADSGoogle Scholar
  35. 35.
    Burke PJ (2004) AC performance of nanoelectronics: towards a ballistic THz nanotube transistor. Solid-State Electronics 48:1981–1986CrossRefADSGoogle Scholar
  36. 36.
    Shuba MV, Slepyan GY, Maksimenko SA, Thomsen C, Lakhtakia A (2009) Theory of multiwall carbon nanotubes as waveguides and antennas in the infrared and the visible regimes. Phys Rev B 79:155403CrossRefADSGoogle Scholar
  37. 37.
    Carrasco E, Perruisseau-Carrier J (2013) Reflect array antenna at terahertz using graphene. IEEE Antennas Wireless Propag Lett 12:253–256CrossRefADSGoogle Scholar
  38. 38.
    Kibis OV, Rosenau da Costa M, Portnoi ME (2007) Generation of terahertz radation by hot electrons in carbon nanotubes. Nano Lett 7:3414–3417CrossRefADSGoogle Scholar
  39. 39.
    Vicarelli L et al (2012) Graphene field-effect transistors as room-temperature terahertz detectors. Nature Materials 11:1–7CrossRefGoogle Scholar
  40. 40.
    Bandurin DA et al (2018) Resonant terahertz detection using graphene plasmons. Nature Communications 9:5392CrossRefADSGoogle Scholar
  41. 41.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefADSGoogle Scholar
  42. 42.
    Saito R, Dresselhaus G, Dresselhaus MS (2004) Physical properties of carbon nanotubes. Imperial College Press, SingaporezbMATHGoogle Scholar
  43. 43.
    Miano G, Forestiere C, Maffucci A, Maksimenko SA, Slepyan GY (2011) Signal propagation in single wall carbon nanotubes of arbitrary chirality. IEEE Trans Nanotechn 10:135–149CrossRefADSGoogle Scholar
  44. 44.
    Wakabayashi K, Sasaki K, Nakanishi T, Enoki T (2010) Electronic states of graphene nanoribbons and analytical solutions. Sci Technol Adv Mater 1:054504CrossRefGoogle Scholar
  45. 45.
    Maffucci A, Miano G (2013) Number of conducting channels for armchair and zig-zag graphene nanoribbon interconnects. IEEE Trans Nanotechn 12:817–823CrossRefADSGoogle Scholar
  46. 46.
    Slepyan GY, Shuba MV, Maksimenko SA, Lakhtakia A (2006) Theory of optical scattering by achiral carbon nanotubes and their potential as optical nanoantennas. Phys Rev B 73:195416CrossRefADSGoogle Scholar
  47. 47.
    Slepyan GY, Maksimenko SA, Lakhtakia A, Yevtushenko O, Gusakov AV (1999) Electrodynamics of carbon nanotubes: Dynamics conductivity, impedance boundary conditions, and surface wave propagation. Phys Rev B 60:17136CrossRefADSGoogle Scholar
  48. 48.
    Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103:64302CrossRefGoogle Scholar
  49. 49.
    Burke PJ, Li S, Yu Z (2006) Quantitative theory of nanowire and nanotube antenna performance. IEEE Trans Nanotechn 5:314–334CrossRefADSGoogle Scholar
  50. 50.
    Llatser I, Kremers C, Cabellos-Aparicio A, Jornet JM, Alarco E, Chigrin DN (2012) Graphene-based nano-patch antenna for terahertz radiation. Photonics and Nanostructures - Fundam. Appl. 10:353–358CrossRefADSGoogle Scholar
  51. 51.
    Slepyan G, Shuba MV, Maksimenko SA, Thomsen C, Lakhtakia A (2010) Terahertz conductivity peak in composite materials containing carbon nanotubes: Theory and interpretation of experiment. Phys Rev B 81:205423CrossRefADSGoogle Scholar
  52. 52.
    Bommeli F, Degiorgi L, Wachter P, Bacsa WS, de Heer WA, Forro L (1996) Evidence of anisotropic metallic behaviour in the optical properties of carbon nanotubes. Solid State Comm 9:513–517CrossRefADSGoogle Scholar
  53. 53.
    Ugawa A, Rinzler AG, Tanner DB (1999) Far-infrared gaps in single-wall carbon nanotubes. Phys Rev B 60:R11305–R11308CrossRefADSGoogle Scholar
  54. 54.
    Borondics F, Kamarás K, Nikolou M, Tanner DB, Chen ZH, Rinzler AG (2006) Charge dynamics in transparent single-walled carbon nanotube films, from optical transmission measurements. Phys Rev B 74:045431CrossRefADSGoogle Scholar
  55. 55.
    Kampfrath T, von Volkmann K, Aguirre CM, Desjardins P, Martel R, Krenz M, Frischkorn C, Wolf M, Perfetti L (2008) Mechanism of the far-infrared absorption of carbon-nanotube films. Phys Rev Lett 101:267403CrossRefADSGoogle Scholar
  56. 56.
    Akima N et al (2006) Strong anisotropy in the far-infrared absorption spectra of stretch-aligned single-walled carbon nanotubes. Adv Mater 18:1166–1169CrossRefGoogle Scholar
  57. 57.
    Waterman PC, Truell R (1961) Multiple scattering of waves. J Math Phys 2:512–537MathSciNetCrossRefADSGoogle Scholar
  58. 58.
    Lakhtakia A (1993) Application of the Waterman-Truell approach for chiral composites. Int J Electron 75:1243–1249CrossRefGoogle Scholar
  59. 59.
    Shuba MV, Paddubskaya AG, Plyushch AO, Kuzhir PP, Slepyan GY, Maksimenko SA, Ksenevich VK, Buka P, Seliuta D, Kasalynas I, Macutkevic J, Valusis G, Thomsen C, Lakhtakia A (2012) Experimental evidence of localized plasmon resonance in composite materials containing single-wall carbon nanotubes. Phys Rev B 85:165435CrossRefADSGoogle Scholar
  60. 60.
    Zhang Q, Hároz EH, Jin Z, Ren L, Wang X, Arvidson RS, Lüttge A, Kono J (2013) Plasmonic nature of the terahertz conductivity peak in single-wall carbon nanotubes. Nano Lett 13:5991–5996CrossRefADSGoogle Scholar
  61. 61.
    Nemilentsau AM, Shuba MV, Slepyan GY, Kuzhir PP, Maksimenko SA, D’yachkov PN, Lakhtakia A (2010) Substitutional doping of carbon nanotubes to control their electromagnetic characteristics, Phys Rev B 82: 235424.CrossRefADSGoogle Scholar
  62. 62.
    Shuba MV, Paddubskaya AG, Kuzhir PP, Slepyan GY, Seliuta D, Kasalynas I, Valusis G, Lakhtakia A (2012) Effects of inclusion dimensions and p-type doping in the terahertz spectra of composite materials containing bundles of single-wall carbon nanotubes. J Nanophotonics 6:061707CrossRefADSGoogle Scholar
  63. 63.
    Chiariello AG, Maffucci A, Miano GA (2013) Circuit models of carbon-based interconnects for nanopackaging. IEEE Trans Components, Packaging and Manufacturing 3:1926–1937CrossRefGoogle Scholar
  64. 64.
    Slepyan GY, Boag A, Mordachev V, Sinkevich E, Maksimenko S, Kuzhir P, Miano G, Portnoi ME, Maffucci A (2015) Nanoscale electromagnetic compatibility: quantum coupling and matching in nanocircuits. IEEE Trans. on Electromagn Compatibility 57:1645–1654CrossRefGoogle Scholar
  65. 65.
    Fichtner N, Zhou X, Russer P (2008) Investigation of carbon nanotube antennas using thin wire integral equations. Adv. Radio Sci. 6:209–211CrossRefADSGoogle Scholar
  66. 66.
    Maffucci A (2018) Carbon interconnects. In: Morris J (ed) Nanopackaging, nanotechnologies and electronics packaging. Springer International Publishing, Cham, pp 725–774CrossRefGoogle Scholar
  67. 67.
    Woessner A et al (2014) Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nature Mater. 14:421–425CrossRefADSGoogle Scholar
  68. 68.
    Yasir M, Savi P, Bistarelli S, Cataldo A, Bozzi M, Perregrini L, Bellucci S (2017) A planar antenna with voltage-controlled frequency tuning based on few-layer graphene. IEEE Antenn. Wireless Propagat Lett 16:2380–2383CrossRefADSGoogle Scholar
  69. 69.
    Llatser I, Kremers C, Chigrin DN, Jornet JM, Lemme MC, Cabellos-Aparicio A, Alarcon E (2012) Radiation characteristics of tunable graphennas in the terahertz band. Radioengineering 21:946–953Google Scholar
  70. 70.
    Li W et al (2014) Ultrafast all-optical graphene modulator. Nano Lett 14:955–959CrossRefADSGoogle Scholar
  71. 71.
    Batrakov KG, Saroka VA, Maksimenko SA, Thomsen C (2012) Plasmon polariton slowing down in graphene structures. J Nanophotonics 6:061719CrossRefADSGoogle Scholar
  72. 72.
    Ryzhii V, Dubinov AA, Aleshkin VY, Ryzhii M, Otsuji T (2013) Injection terahertz laser using the resonant inter-layer radiative transitions in double-graphene-layer structure. Appl Phys Lett 103:10–14CrossRefGoogle Scholar
  73. 73.
    Correas-Serrano D, Gomez-Diaz JS, Alu A, Alvarez-Melcon A (2015) Electrically and magnetically biased graphene-based cylindrical waveguides: Analysis and applications as reconfigurable antennas. IEEE Trans. Terahertz Sci. Technol. 5:951–960CrossRefADSGoogle Scholar
  74. 74.
    Zhu B, Ren G, Gao Y, Yang Y, Lian Y, Jian S (2014) Graphene-coated tapered nanowire infrared probe: a comparison with metal-coated probes. Optics Express 22:24096–24103CrossRefADSGoogle Scholar
  75. 75.
    Tamagnone M, Gómez-Diaz JS, Mosig JR, Perruisseau-Carrier J (2012) Reconfigurable terahertz plasmonic antenna concept using a graphene stack. Appl Phys Lett 101:214102Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Electrical and Information EngineeringUniversity of Cassino and Southern LazioCassinoItaly
  2. 2.INFN – LNFFrascatiItaly
  3. 3.Institute for Nuclear ProblemsBelarusian State UniversityMinskBelarus

Personalised recommendations