Advertisement

Electromagnetic Response of Carbon Nanotube-Based Composites

  • Mikhail V. ShubaEmail author
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

We analyze electromagnetic parameters of carbon nanotube (CNT) based composite. The simple theory for low-content composites comprising non-interacting CNTs can provide the main physical mechanisms determining their electromagnetic response. Frequency and concentration dependencies of the effective conductivity of the composites in the microwave and terahertz ranges are discussed.

Keywords

Carbon nanotubes Composite Microwave Terahertz Effective conductivity 

Notes

Acknowledgements

This research was partially supported by the Belarusian Republican Foundation for Fundamental Research (BRFFR) under project F18Kor-002 by the H2020-MSCA-RISE-2014 project 644076 CoExAN, and the MSCA-RISE-2016 project 734164 “Graphene-3D”.

References

  1. 1.
    Saito R, Dresselhaus G, Dresselhaus MS (2004) Physical properties of carbon nanotubes. Imperial College Press, SingaporezbMATHGoogle Scholar
  2. 2.
    Reich S, Thomsen C, Maultzsch J (2004) Carbon nanotubes. Basic concepts and physical properties. Wiley-VCH, BerlinGoogle Scholar
  3. 3.
    Tasaki S, Maekawa K, Yamabe T (1998) π-Band contribution to the optical properties of carbon nanotubes: Effects of chirality. Phys Rev B 57:9301CrossRefADSGoogle Scholar
  4. 4.
    Slepyan GY, Maksimenko SA, Lakhtakia A, Yevtushenko O, Gusakov AV (1999) Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation. Phys Rev B 60:17136–17149CrossRefADSGoogle Scholar
  5. 5.
    Maksimenko SA, Slepyan GY (2000) Electrodynamic properties of carbon nanotubes. In: Singh ON, Lakhtakia A (eds) Electromagnetic fields in unconventional materials and structures. Wiley, New York, pp 217–255Google Scholar
  6. 6.
    Wang F, Itkis ME, Haddon RC (2010) Enhanced electromodulation of infrared transmittance in semitransparent films of large diameter semiconducting single-walled carbon nanotubes. Nano Lett 10:937CrossRefADSGoogle Scholar
  7. 7.
    Blackburn JL, Barnes TM, Beard MC, Kim YH, Tenent RC, McDonald TJ, To B, Coutts TJ, Heben MJ (2008) Transparent conductive single-walled carbon nanotube networks with precisely tunable ratios of semiconducting and metallic nanotubes. ACS Nano 2:1266–1274CrossRefGoogle Scholar
  8. 8.
    Zhang Q, Hároz EH, Jin Z, Ren L, Wang X, Arvidson RS, Lüttge A, Kono J (2013) Plasmonic nature of the terahertz conductivity peak in single-wall carbon nanotubes. Nano Lett 13:5991–5996CrossRefADSGoogle Scholar
  9. 9.
    Nemilentsau AM, Shuba MV, Slepyan GY, Kuzhir PP, Maksimenko SA, D’yachkov PN, Lakhtakia A (2010) Substitutional doping of carbon nanotubes to control their electromagnetic characteristics. Phys Rev B 82:235424CrossRefADSGoogle Scholar
  10. 10.
    Hanson GW (2005) Fundamental transmitting properties of carbon nanotube antennas. IEEE Trans Antennas Prop 53:3426–3435CrossRefADSGoogle Scholar
  11. 11.
    Slepyan GY, Shuba MV, Maksimenko SA, Lakhtakia A (2006) Theory of optical scattering by achiral carbon nanotubes and their potential as optical nanoantennas. Phys Rev B 73:195416CrossRefADSGoogle Scholar
  12. 12.
    Burke PJ, Li S, Yu Z (2006) Quantitative theory of nanowire and nanotube antenna performance. IEEE Trans Nanotechnol 5:314–334CrossRefADSGoogle Scholar
  13. 13.
    Shuba MV, Slepyan GY, Maksimenko SA, Thomsen C, Lakhtakia A (2009) Theory of multiwall carbon nanotubes as waveguides and antennas in the infrared and the visible regimes. Phys Rev B 79:155403CrossRefADSGoogle Scholar
  14. 14.
    Shuba MV, Maksimenko SA, Lakhtakia A (2007) Electromagnetic wave propagation in an almost circular bundle of closely packed, metallic, carbon nanotubes. Phys Rev B 76:155407CrossRefADSGoogle Scholar
  15. 15.
    Shuba MV, Slepyan GY, Maksimenko SA, Hanson GW (2010) Radiofrequency field absorption by carbon nanotubes embedded in a conductive host. J Appl Phys 108:114302CrossRefADSGoogle Scholar
  16. 16.
    Hassan AM, Vargas-Lara F, Douglas JF, Garboczi EJ (2016) Electromagnetic resonances of individual single-walled carbon nanotubes with realistic shapes: a characteristic modes approach. IEEE Trans Antenn Propag 64:2743–2757MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    Shuba MV, Melnikov AV, Kuzhir PP, Maksimenko SA, Slepyan GY, Boag A, Mosca Conte A, Pulci O, Bellucci S (2017) Integral equation technique for scatterers with mesoscopic insertions: application to a carbon nanotube. Phys Rev B 96:205414CrossRefADSGoogle Scholar
  18. 18.
    Hao J, Hanson GW (2016) Electromagnetic scattering from finite-length metallic carbon nanotubes in the lower IR bands. Phys Rev B 74:035119CrossRefADSGoogle Scholar
  19. 19.
    Nefedov IS (2010) Electromagnetic waves propagating in a periodic array of parallel metallic carbon nanotubes. Phys Rev B 82:155423CrossRefADSGoogle Scholar
  20. 20.
    Mikki S, Kishk A (2018) An efficient algorithm for the analysis and design of carbon nanotube photonic crystals. Prog Electromagnet Res C 83:83–96CrossRefGoogle Scholar
  21. 21.
    Gong S, Zhu ZH, Haddad EI (2013) Modeling electrical conductivity of nanocomposites by considering carbon nanotube deformation at nanotube junctions. J Appl Phys 114:074303CrossRefADSGoogle Scholar
  22. 22.
    Bao WS, Meguid SA, Zhu ZH, Pan Y, Weng GJ (2013) Effect of carbon nanotube geometry upon tunneling assisted electrical network in nanocomposites. J Appl Phys 113:234313CrossRefADSGoogle Scholar
  23. 23.
    Waterman PC, Truell R (1961) Multiple scattering of waves. J Math Phys 2:512MathSciNetCrossRefADSGoogle Scholar
  24. 24.
    Slepyan GY, Shuba MV, Maksimenko SA, Thomsen C, Lakhtakia A (2010) Terahertz conductivity peak in composite materials containing carbon nanotubes: theory and interpretation of experiment. Phys Rev B 81:205423CrossRefADSGoogle Scholar
  25. 25.
    Shuba MV, Melnikov AV, Paddubskaya AV, Kuzhir PP, Maksimenko SA, Thomsen C (2013) The role of finite size effects in the microwave and sub-terahertz electromagnetic response of multiwall carbon nanotube based composite: theory and interpretation of experiment. Phys Rev B 88:045436CrossRefADSGoogle Scholar
  26. 26.
    Burke P (2002) Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans Nanotechnol 1:129–144CrossRefADSGoogle Scholar
  27. 27.
    Shuba MV, Paddubskaya AG, Plyushch AO, Kuzhir PP, Slepyan GY, Maksimenko SA, Ksenevich VK, Buka P, Seliuta D, Kasalynas I, Macutkevic J, Valusis G, Thomsen C, Lakhtakia A (2012) Experimental evidence of localized plasmon resonance in composite materials containing single-wall carbon nanotubes. Phys Rev B 85:165435CrossRefADSGoogle Scholar
  28. 28.
    Nemilentsau AM, Slepyan GY, Maksimenko SA (2007) Thermal radiation from carbon nanotubes in the terahertz range. Phys Rev Lett 99:147403CrossRefADSGoogle Scholar
  29. 29.
    Shuba MV, Maksimenko SA, Slepyan GY (2009) Absorption cross-section and near-field enhancement in finite-length carbon nanotubes in the terahertz-to-optical range. J Comput Theor Nanosci 6:2016–2023CrossRefGoogle Scholar
  30. 30.
    Shuba MV, Paddubskaya AG, Kuzhir PP, Maksimenko SA, Valusis G, Ivanov M, Banys J, Ksenevich V, Hanson GW (2017) Observation of the microwave near-field enhancement effect in suspensions comprising single-walled carbon nanotubes. Mat Res Exp 4:075033CrossRefGoogle Scholar
  31. 31.
    Shuba MV, Paddubskaya A, Kuzhir PP, Maksimenko SM, Flahaut E, Fierro V, Celzard A, Valusis G (2017) Short-length carbon nanotubes as building blocks for high dielectric constant materials in the terahertz range. J Phys D 50:08LT01CrossRefGoogle Scholar
  32. 32.
    Shuba MV, Maksimenko SA (2016) Carbon nanotube based composites as materials for terahertz application. J Appl Spectrosc 83:753–754Google Scholar
  33. 33.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193CrossRefADSGoogle Scholar
  34. 34.
    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR, Wang F (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotech 6:630–634CrossRefADSGoogle Scholar
  35. 35.
    Shuba MV, Paddubskaya AG, Kuzhir PP, Slepyan GY, Seliuta D, Kasalynas I, Valusis G, Lakhtakia A (2012) Effects of inclusion dimensions and p-type doping in the terahertz spectra of composite materials containing bundles of single-wall carbon nanotubes. J Nanophoton 6:061707CrossRefGoogle Scholar
  36. 36.
    Shuba MV, Paddubskaya AG, Kuzhir PP, Maksimenko SA, Ksenevich V, Niaura G, Seliuta D, Kašalynas I, Valusis G (2012) Soft cutting of single-wall carbon nanotubes by low temperature ultrasonication in a mixture of sulfuric and nitric acids. Nanotechnology 23:495714CrossRefGoogle Scholar
  37. 37.
    Morimoto T, Joung S-K, Saito T, Futaba DN, Hata K, Okazaki T (2014) Length-dependent plasmon resonance in single-walled carbon nanotubes. ACS Nano 8:9897–9904CrossRefGoogle Scholar
  38. 38.
    Morimoto T, Okazaki T (2015) Optical resonance in far-infrared spectra of multiwalled carbon nanotubes. Appl Phys Express 8:055101CrossRefADSGoogle Scholar
  39. 39.
    Shuba MV, Yuko DI, Kuzhir PP, Maksimenko SA, Chigir GG, Pyatlitski AN, Sedelnikova O, Okotrub AV, Lambin P (2018) Localized plasmon resonance in boron doped multi-walled carbon nanotubes. Phys Rev B 97:205427CrossRefADSGoogle Scholar
  40. 40.
    Shuba MV, Yuko DI, Kuzhir PP, Maksimenko SA, Kanygin MA, Okotrub AV, Tenne R, Lambin P (2018) How effectively do carbon nanotube inclusions contribute to the electromagnetic performance of a composite material? Estimation criteria from microwave and terahertz measurements. Carbon 129:688–694CrossRefGoogle Scholar
  41. 41.
    Karlsen P, Shuba MV, Beckerleg C, Yuko DI, Kuzhir PP, Maksimenko SA, Ksenevich V, Viet H, Nasibulin AG, Tenne R, Hendry E (2018) Influence of nanotube length and density on the plasmonic terahertz response of single-walled carbon nanotubes. J Phys D Appl Phys 51:014003CrossRefADSGoogle Scholar
  42. 42.
    Jonscher AK (1999) Dielectric relaxation in solids. J Phys D Appl Phys 32:R57CrossRefADSGoogle Scholar
  43. 43.
    Shuba M, Yuko D, Bychanok D, Liubimau A, Meisak D, Bochkov I, Kuzhir P (2017) Comparison of the electrical conductivity of polymer composites in the microwave and terahertz frequency ranges, IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS): 1–3Google Scholar
  44. 44.
    Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Comput Sci Technol 69:1486–1498CrossRefGoogle Scholar
  45. 45.
    Shuba MV, Yuko DI, Kuzhir PP, Maksimenko SA, De Crescenzi M, Scarselli M (2018) Carbon nanotube sponges as tunable materials for electromagnetic applications. Nanotechnology 29:375202CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute for Nuclear Problem, Belarusian State UniversityMinskBelarus

Personalised recommendations