Challenges on the Production and Characterization of B-Doped Single Walled Carbon Nanotubes

  • Paola AyalaEmail author
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


This chapter is mainly devoted to give a fundamental insight on the concepts behind the wall modification, doping, and general formation of single-walled nanotubes that involve the presence of boron as heteroatoms within the nanotube structure. Research on carbon nanotubes has matured in various fields reaching real possibilities for applications. However, in structures like substitutionally doped nanotubes, the full application potential can only be reached if bonding environments, doping levels and overall morphology can somewhat be controlled. This is not the case for boron doped single-walled carbon nanotubes and it will be taken as example of discussion throughout the following sections. The bulk and local characterization tools employed with these materials are here discussed regarding their suitability and limitations. Furthermore, focusing on applications, the theoretical approaches confirming the physical and chemical properties are objectively analyzed versus the materials available at this moment.


Single-walled carbon nanotubes Functionalization Doping Spectroscopy 


  1. 1.
    Ayala P, Arenal R, Loiseau A, Rubio A, Pichler T (2010) The physical and chemical properties of heteronanotubes. Rev Mod Phys 82:1843ADSGoogle Scholar
  2. 2.
    Andreas H (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41(11):1853Google Scholar
  3. 3.
    Ayala P, Arenal R, Rümmeli M, Rubio A, Pichler T (2010) The doping of carbon nanotubes with nitrogen and their potential applications. Carbon 48(3):575Google Scholar
  4. 4.
    Klumpp C, Kostarelos K, Prato M, Bianco A (2006) Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochimica et Biophysica Acta (BBA) – Biomembranes 1758(3):404. Mechanisms of carrier-mediated intracellular delivery of therapeuticsGoogle Scholar
  5. 5.
    Jorio A, Dresselhaus M, Dresselhaus G (2008) Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications. Springer, HeidelbergzbMATHGoogle Scholar
  6. 6.
    Ayala P, Grueneis A, Gemming T, Buechner B, Ruemmeli MH, Grimm D, Schumann J, Kaltofen R, Freire FL Jr, Fonseca Filho HD, Pichler T (2007) Influence of the catalyst hydrogen pretreatment on the growth of vertically aligned nitrogen-doped carbon nanotubes. Chem Mater 19(25):6131Google Scholar
  7. 7.
    Ayala P, Grüneis A, Gemming T, Grimm D, Kramberger C, Rümmeli M, Freire FL Jr, Kuzmany H, Pfeiffer R, Barreiro A, Büchner B, Pichler T (2007) Tailoring n-doped single and double wall carbon nanotubes from a non-diluted carbon/nitrogen feedstock. J Phys Chem C 101:2879Google Scholar
  8. 8.
    Ayala P, Grüneis A, Kramberger C, Rümmeli M, Freire F Jr, Solórzano IG, Pichler T (2007) Effects of the reaction atmposphere compositon on the synthesis of single and multiwall nitrogen doped nanotubes. J Chem Phys 127:184709ADSGoogle Scholar
  9. 9.
    Han W (2006) Silicon doped boron carbide nanorod growth via a solid-liquid-solid process. Appl Phys Lett 88(13)ADSGoogle Scholar
  10. 10.
    Ruiz-Soria G, Susi T, Sauer M, Yanagi K, Pichler T, Ayala P (2015) On the bonding environment of phosphorus in purified doped single-walled carbon nanotubes. Carbon 81:91Google Scholar
  11. 11.
    Ruiz-Soria G, Ayala P, Puchegger S, Kataura H, Yanagi K, Pichler T (2011) On the purification of cvd grown boron doped single-walled carbon nanotubes. Phys Stat Sol B 248(11):2504ADSGoogle Scholar
  12. 12.
    Chegel R (2016) Tuning electronic properties of carbon nanotubes by boron and nitrogen doping. Physica B 499:1ADSGoogle Scholar
  13. 13.
    Hai-Yang S, Xin-Wei Z (2009) The effects of boron doping and boron grafts on the mechanical properties of single-walled carbon nanotubes. J Phys D 42(22)Google Scholar
  14. 14.
    Fakhrabadi MMS, Allahverdizadeh A, Norouzifard V, Dadashzadeh B (2012) Effects of boron doping on mechanical properties and thermal conductivities of carbon nanotubes. Solid State Commun 152(21):1973ADSGoogle Scholar
  15. 15.
    Li YF, Wang Y, Chen SM, Wang HF, Kaneko T, Hatakeyama R (2013) Electrical transport properties of boron-doped single-walled carbon nanotubes. J Appl Phys 113(5)ADSGoogle Scholar
  16. 16.
    Anand B, Podila R, Ayala P, Oliveira L, Philip R, Sai SSS, Zakhidov AA, Rao AM (2013) Nonlinear optical properties of boron doped single-walled carbon nanotubes. Nanoscale 5(16):7271ADSGoogle Scholar
  17. 17.
    Pichler T, Borowiak-Palen E, Fuentes G, Knupfer M, Graff A, Fink J, Wirtz L, Rubio A (2003) Electronic structure and optical properties of boron doped single-wall arbon nanotubes. Mol Nanostruct 685(4):361ADSGoogle Scholar
  18. 18.
    Krstic V, Blumentritt S, Muster J, Roth S, Rubio A (2003) Role of disorder on transport in boron-doped multiwalled carbon nanotubes. Phys Rev B 67(4)Google Scholar
  19. 19.
    Wei B, Spolenak R, Kohler-Redlich P, Ruhle M, Arzt E (1999) Electrical transport in pure and boron-doped carbon nanotubes. Appl Phys Lett 74(21):3149ADSGoogle Scholar
  20. 20.
    Jalili S, Akhavan M, Schofield J (2012) Electronic and structural properties of bc3 nanotubes with defects. J Phys Chem C 116:13225Google Scholar
  21. 21.
    Cardona M, Yu P (2010) Fundamentals of semiconductors: physics and materials properties. Springer, Berlin/HeidelbergzbMATHGoogle Scholar
  22. 22.
    Liu X, Pichler T, Knupfer M, Fink J, Kataura H (2004) Electronic properties of fecl3-intercalated single-wall carbon nanotubes. Phys Rev B 70(20):205405ADSGoogle Scholar
  23. 23.
    Lee RS, Kim HJ, Fischer JE, Thess A, Smalley RE (1997) Conductivity enhancement in single-walled carbon nanotube bundles doped with k and br. Nature 388(6639):255ADSGoogle Scholar
  24. 24.
    Guerini S, Souza AG, Mendes J, Alves OL, Fagan SB (2005) Electronic properties of fecl3-adsorbed single-wall carbon nanotubes. Phys Rev B 72(23)Google Scholar
  25. 25.
    Yi JY, Bernholc J (1993) Atomic structure and doping of microtubules. Phys Rev B 47(3):1708ADSGoogle Scholar
  26. 26.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 56:354Google Scholar
  27. 27.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603ADSGoogle Scholar
  28. 28.
    Serin V, Brydson R, Scott A, Kihn Y, Abidate O, Maquin B, Derre A (2000) Evidence for the solubility of boron in graphite by electron energy loss spectroscopy. Carbon 38(4):547Google Scholar
  29. 29.
    Terrones M, Jorio A, Endo M, Rao A, Kim Y, Hayashi T, Terrones H, Charlier JC, Dresselhaus G, Dresselhaus M (2004) New direction in nanotube science. Materialstoday, p 30Google Scholar
  30. 30.
    Borowiak-Palen E, Pichler T, Fuentes G, Graff A, Kalenczuk R, Knupfer M, Fink J (2004) Synthesis and electronic properties of b-doped single wall carbon nanotubes. Carbon 42:1123Google Scholar
  31. 31.
    Borowiak-Palen E, Pichler T, Fuentes G, Graff A, Kalenczuk R, Knupfer M, Fink J (2003) Efficient production of b-substituted single-wall carbon nanotubes. Chem Phys Lett 378(5–6):516ADSGoogle Scholar
  32. 32.
    Golberg D, Bando Y, Burgeois L, Kurashima K, Sato T (2000) Large-scale synthesis and hrtem analysis of single-walled b- and n-doped carbon nanotube bundles. Carbon 38:2017Google Scholar
  33. 33.
    Fuentes G, Borowiak-Palen E, Knupfer M, Pichler T, Fink J, Wirtz L, Rubio A (2004) Formation and electronic properties of bc3single-wall nanotubes upon boron substitution of carbon nanotubes. Phys Rev B 69(24):245403ADSGoogle Scholar
  34. 34.
    Miyamoto Y, Rubio A, Louie SG, Cohen ML (1994) Electronic properties of tubule forms of hexagonal bc3. Phys Rev B 50(24):18360ADSGoogle Scholar
  35. 35.
    Miyamoto Y, Rubio A, Cohen ML, Louie SG (1994) Chiral tubules of hexagonal bc2n. Phys Rev B 50:4976ADSGoogle Scholar
  36. 36.
    Liu AY, Wentzcovitch RM, Cohen ML (1989) Atomic arrangement and electronic structure of bc2n. Phys Rev B 39(3):1760ADSGoogle Scholar
  37. 37.
    Carroll D, Redlich P, Blase X, Charlier J, Curran S, Ajayan P, Roth S, Ruhle M (1998) Effects of nanodomain formation on the electronic structure of doped carbon nanotubes. Phys Rev Lett 81(11):2332ADSGoogle Scholar
  38. 38.
    Wirtz L, Rubio A (2003) Band structure of boron doped carbon nanotubes. Mol Nanostruct 685(4):402ADSGoogle Scholar
  39. 39.
    Rümmeli MH, Ayala P, Pichler T (2010) Carbon nanotubes and related structures: production and formation, chap. 1. Cambridge University Press, UK, pp 1–21Google Scholar
  40. 40.
    Kitiyanan B, Alvarez WE, Harwell JH, Resasco DE (2000) Controlled production of single-wall carbon nanotubes by catalytic decomposition of co on bimetallic co-mo catalysts. Chem Phys Lett 317(3–5):497ADSGoogle Scholar
  41. 41.
    Bachilo S, Balzano L, Herrera J, Pompeo F, Resasco D, Weisman R (2003) Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalystblase. J Am Chem Soc 125:11186Google Scholar
  42. 42.
    Tanaka T, Jin H, Miyata Y, Fujii S, Suga H, Naitoh Y, Minari T, Miyadera T, Tsukagoshi K, Kataura H (2009) Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes. Nano Lett 9(4):1497ADSGoogle Scholar
  43. 43.
    Yanagi K, Iitsuka T, Fujii S, Kataura H (2008) Separations of metallic and semiconducting carbon nanotubes by using sucrose as a gradient medium. J Phys Chem C 112(48):18889Google Scholar
  44. 44.
    Arnold M, Green A, Hulvat J, Stupp S, Hersam M (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1:60ADSGoogle Scholar
  45. 45.
    Stephan O, Ajayan P, Colliex C, Redlich P, Lambert J, Bernier P, Lefin P (1994) Doping graphitic and carbon nanotube structures with boron and nitrogen. Science 266:1863Google Scholar
  46. 46.
    Ewels C, Glerup M (2005) Nitrogen doping in carbon nanotubes. J Nanosci Nanotechnol 5(9):1345Google Scholar
  47. 47.
    Golberg D, Bando Y, Tang C, Zhi C (2007) Boron nitride nanotubes. Adv Mat 19(18):2413Google Scholar
  48. 48.
    Weng-Sieh Z, Cherrey K, Chopra NG, Blase X, Miyamoto Y, Rubio A, Cohen ML, Louie SG, Zettl A, Gronsky R (1995) Synthesis of bxcynz nanotubules. Phys Rev B 51:11229ADSGoogle Scholar
  49. 49.
    Redlich P, Loeffler J, Ajayan P, Bill J, Aldinger F, Ruhle M (1996) B-c-n nanotubes and boron doping of carbon nanotubes. Chem Phys Lett 260(3–4):465ADSGoogle Scholar
  50. 50.
    Maultzsch J, Reich S, Thomsen C, Webster S, Czerw R, Carroll D, Vieira S, Birkett P, Rego C (2002) Raman characterization of boron-doped multiwalled carbon nanotubes. Appl Phys Lett 81(14):2647ADSGoogle Scholar
  51. 51.
    Carroll D, Redlich P, Ajayan P, Curran S, Roth S, Ruhle M (1998) Spatial variations in the electronic structure of pure and b-doped nanotubes. Carbon 36(5):753Google Scholar
  52. 52.
    Babanejad SA, Malekfar R, Ashrafi F, Hosseini SMRS (2010) Production and study of boron and nitrogen-doped carbon nanotubes by arc discharge method using dispersive raman back-scattering spectroscopy. Asian J Chem 22(1):245Google Scholar
  53. 53.
    Wang B, Ma Y, Wu Y, Li N, Huang Y, Chen Y (2009) Direct and large scale electric arc discharge synthesis of boron and nitrogen doped single-walled carbon nanotubes and their electronic properties. Carbon 47(8):2112Google Scholar
  54. 54.
    Deng C, Chen J, Chen X, Mao C, Nie L, Yao S (2008) Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode. Biosens Bioelectron 23(8):1272Google Scholar
  55. 55.
    Han W, Bando Y, Kurashima K, Sato T (1999) Boron-doped carbon nanotubes prepared through a substitution reaction. Chem Phys Lett 299(5):368ADSGoogle Scholar
  56. 56.
    Chiang WH, Chen GL, Hsieh CY, Lo SC (2015) Controllable boron doping of carbon nanotubes with tunable dopant functionalities: an effective strategy toward carbon materials with enhanced electrical properties. RSC Adv 5(118):97579Google Scholar
  57. 57.
    Golberg D, Bando Y, Kurashima K, Sato T (2001) Synthesis, hrtem and electron diffraction studies of b/n-doped c and bn nanotubes. Diamond Relat Mater 10(1):63ADSGoogle Scholar
  58. 58.
    Chen C, Tsai C, Lin C (2003) The characterization of boron-doped carbon nanotube arrays. Diamond Relat Mater 12(9):1500ADSGoogle Scholar
  59. 59.
    Koos AA, Dillon F, Obraztsova EA, Crossley A, Grobert N (2010) Comparison of structural changes in nitrogen and boron-doped multi-walled carbon nanotubes. Carbon 48(11):3033Google Scholar
  60. 60.
    Panchakarla LS, Govindaraj A, Rao CNR (2010) Boron- and nitrogen-doped carbon nanotubes and graphene. Inorg Chim Acta 363(15):4163Google Scholar
  61. 61.
    Lyu SC, Han JH, Shin KW, Sok JH (2011) Synthesis of boron-doped double-walled carbon nanotubes by the catalytic decomposition of tetrahydrofuran and triisopropyl borate. Carbon 49(5):1532Google Scholar
  62. 62.
    Cao Y, Yu H, Tan J, Peng F, Wang H, Li J, Zheng W, Wong NB (2013) Nitrogen-, phosphorous- and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane. Carbon 57:433Google Scholar
  63. 63.
    Keru G, Ndungu PG, Nyamori VO (2015) Effect of boron concentration on physicochemical properties of boron-doped carbon nanotubes. Mater Chem Phys 153:323Google Scholar
  64. 64.
    Daothong S, Parjanne J, Kauppinen EI, Valkeapää M, Pichler T, Singjai P, Ayala P (2009) Study of the role of fe based catalysts on the growth of b-doped swcnts synthesized by cvd. Phys Status Solidi B 246(11–12):2518ADSGoogle Scholar
  65. 65.
    Ayala P, Plank W, Grüneis A, Kauppinen E, Rümmeli MH, Kuzmany H, Pichler T (2008) A one step approach to b-doped single-walled carbon nanotubes. J Mater Chem 18:5676Google Scholar
  66. 66.
    Ayala P, Ruemmeli MH, Gemming T, Kauppinen E, Kuzmany H, Pichler T (2008) Cvd growth of single-walled b-doped carbon nanotubes. Phys Stat Sol B 245(10, Sp. Iss. SI):1935ADSGoogle Scholar
  67. 67.
    Monteiro FH, Larrude DG, Maia da Costa MEH, Freire FL (2013) Estimating the boron doping level on single wall carbon nanotubes using raman spectroscopy. Mater Lett 92:224Google Scholar
  68. 68.
    Monteiro FH, Larrude DG, Maia da Costa MEH, Terrazos LA, Capaz RB, Freire FL Jr (2012) Production and characterization of boron-doped single wall carbon nanotubes. J Phys Chem C 116(5):3281Google Scholar
  69. 69.
    Ruiz-Soria G, Daothong S, Pichler T, Ayala P (2012) Spectroscopic study of the diameter distribution of b-doped single-walled carbon nanotubes. Phys Status Solidi B 249(12):2469ADSGoogle Scholar
  70. 70.
    Gai P, Stephan O, McGuire K, Rao A, Dresselhaus M, Dresselhaus G, Colliex C (2004) Structural systematics in boron-doped single wall carbon nanotubes. J Mater Chem 14(4):669Google Scholar
  71. 71.
    McGuire K, Gothard N, Gai P, Dresselhaus M, Sumanasekera G, Rao A (2005) Synthesis and raman characterization of boron-doped single-walled carbon nanotubes. Carbon 43:219Google Scholar
  72. 72.
    Blackburn JL, Yan Y, Engtrakul C, Parilla PA, Jones K, Gennett T, Dillon AC, Heben MJ (2006) Synthesis and characterization of boron-doped single-wall carbon nanotubes produced by the laser vaporization technique. Chem Mater 18(10):2558Google Scholar
  73. 73.
    Ayala P, Reppert J, Grobosch M, Knupfer M, Pichler T, Rao AM (2010) Evidence for substitutional boron in doped single-walled carbon nanotubes. Appl Phys Lett 96(18)ADSGoogle Scholar
  74. 74.
    Glerup M, Steinmetz J, Samaille D, Stephan O, Enouz S, Loiseau A, Roth S, Bernier P (2004) Synthesis of n-doped swnt using the arc-discharge procedure. Chem Phys Lett 387(1–3):193ADSGoogle Scholar
  75. 75.
    Droppa R Jr, Hammer P, Carvalho A, Alvarez F (2002) Incorporation of nitrogen in carbon nanotubes. J Non-Cryst Solids 874:299Google Scholar
  76. 76.
    Han W, Bando Y, Kurashima K, Sato T (1998) Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction. Appl Phys Lett 73(21):3085ADSGoogle Scholar
  77. 77.
    Golberg D, Bando Y, Han W, Kurashima K, Sato T (1999) Single-walled b-doped carbon, b/n-doped carbon and bn nanotubes synthesized from single-walled carbon nanotubes through a substitution eaction. Chem Phys Lett 308(3–4):337ADSGoogle Scholar
  78. 78.
    Bystrzejewski M, Bachmatiuk A, Thomas J, Ayala P, Serwatowski J, Huebers HW, Gemming T, Borowiak-Palen E, Pichler T, Kalenczuk RJ, Buechner B, Ruemmeli MH (2009) Boron doped carbon nanotubes via ceramic catalysts. Phys Stat Sol RRL 3(6):193Google Scholar
  79. 79.
    Arenal R, Stephan O, Cochon JL, Loiseau A (2007) Root-growth mechanism for single-walled boron nitride nanotubes in laser vaporization technique. J Am Chem Soc 129(51):16183Google Scholar
  80. 80.
    Hassanien A, Tokumoto M, Shimizu T, Tokumoto H (2004) Stm on suspended single wall carbon nanotubes. Thin Solid Films 464:338. 7th international symposium on atomically controlled surfaces, interfaces and nanostructures, Nara, 16–20 Nov 2003Google Scholar
  81. 81.
    Orlikowski D, Nardelli M, Bernholc J, Roland C (2000) Theoretical stm signatures and transport properties of native defects in carbon nanotubes. Phys Rev B 61(20):14194ADSGoogle Scholar
  82. 82.
    Ichimura K, Osawa M, Nomura K, Kataura H, Maniwa Y, Suziki S, Achiba Y (2002) Tunneling spectroscopy on carbon nanotubes using stm. Physica B 323(1–4):230 Tsukuba symposium on carbon nanotube in commemoration of the 10th anniversary of its discovery, Tsukuba, 03–05 Oct 2001Google Scholar
  83. 83.
    Odom T, Huang J, Lieber C (2002) Stm studies of single-walled carbon nanotubes. J Phys-Condens Matter 14(6):R145Google Scholar
  84. 84.
    Kim P, Odom T, Huang J, Lieber C (2000) Stm study of single-walled carbon nanotubes. Carbon 38(11–12):1741Google Scholar
  85. 85.
    Biro L, Gyulai J, Lambin P, Nagy J, Lazarescu S, Mark G, Fonseca A, Surjan P, Szekeres Z, Thiry P, Lucas A (1998) Scanning tunnelling microscopy (stm) imaging of carbon nanotubes. Carbon 36(5–6):689. Symposium A on fullerenes and carbon based materials, at the European-Materials-Research-Society 1997 meeting, Strasbourg, 16–20 June 1997Google Scholar
  86. 86.
    Tans SJ, Dekker C (2000) Molecular transistors: potential modulations along carbon nanotubes. Nature 404:834ADSGoogle Scholar
  87. 87.
    Rubio A (1999) Spectroscopic properties and stm images of carbon nanotubes. Appl Phys A 68(3):275ADSGoogle Scholar
  88. 88.
    Lambin P, Mark G, Meunier V, Biro L (2003) Computation of stm images of carbon nanotubes. Int J Quantum Chem 95(4–5):493. 43rd international symposium on theory and computations in molecular and materials sciences, biology, and pharmacology, St Augustine, 22 Feb–01 Mar 2003Google Scholar
  89. 89.
    Jorio A, Saito R, Hafner JH, Lieber CM, Hunter M, McClure T, Dresselhaus G, Dresselhaus MS (2001) Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant raman scattering. Phys Rev Lett 86(6):1118ADSGoogle Scholar
  90. 90.
    Caudal N, Saitta AM, Lazzeri M, Mauri F (2007) Kohn anomalies and nonadiabaticity in doped carbon nanotubes. Phys Rev B 75:115423ADSGoogle Scholar
  91. 91.
    Maciel I, Anderson N, Pimenta M, Hartschuh A, Quian H, Terrones M, Terrones H, Campos-Delgado J, Rao A, Novotny L, Jorio A (2008) Electron and phonon renormalization near charged defects in carbon nanotubes. Nat Mater 7:878ADSGoogle Scholar
  92. 92.
    Fink J (1989) Recent development in energy-loss spectroscopy. Adv Electron Electron Phys 75:121Google Scholar
  93. 93.
    Jacobsohn L, Schulze R, da Costa MM, Nastasi M (2004) X-ray photoelectron spectroscopy investigation of boron carbide films deposited by sputtering. Surf Sci 572:418ADSGoogle Scholar
  94. 94.
    Panchakarla LS, Govindaraj A, Rao CNR (2007) Nitrogen- and boron-doped double-walled carbon nanotubes. ACS Nano 1(5):494Google Scholar
  95. 95.
    Kramberger C, Rauf H, Shiozawa H, Knupfer M, Büchner B, Pichler T (2007) Unraveling van hove singularities in the x-ray absorption response of single wall carbon nanotubes. Phys Rev B 75:235437ADSGoogle Scholar
  96. 96.
    Charlier JC, Blase X, Roche S (2007) Electronic and transport properties of nanotubes. Rev Mod Phys 79(2):677ADSGoogle Scholar
  97. 97.
    Xu Z, Lu W, Wang W, Gu C, Liu K, Bai X, Wang E, Dai H (2008) Converting metallic single-walled carbon nanotnbes into semiconductors by boron/nitrogen co-doping. Adv Mat 20(19):3615+Google Scholar
  98. 98.
    Latil S, Roche S, Mayou D, Charlier J (2004) Mesoscopic transport in chemically doped carbon nanotubes. Phys Rev Lett 92(25)Google Scholar
  99. 99.
    Das A, Sood AK, Govindaraj A, Saitta AM, Lazzeri M, Mauri F, Rao CNR (2007) Doping in carbon nanotubes probed by raman and transport measurements. Phys Rev Lett 99Google Scholar
  100. 100.
    Murata N, Haruyama J, Reppert J, Rao AM, Koretsune T, Saito S, Matsudaira M, Yagi Y (2008) Superconductivity in thin films of boron-doped carbon nanotubes. Phys Rev Lett 101(2):027002ADSGoogle Scholar
  101. 101.
    Cheng Y, Tian Y, Fan X, Liu J, Yan C (2014) Boron doped multi-walled carbon nanotubes as catalysts for oxygen reduction reaction and oxygen evolution reactionin in alkaline media. Electrochim Acta 143:291Google Scholar
  102. 102.
    Chen X, Chen J, Deng C, Xiao C, Yang Y, Nie Z, Yao S (2008) Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode. Talanta 76(4):763Google Scholar
  103. 103.
    Haruyama J, Matsudaira M, Reppert J, Rao A, Koretsune T, Saito S, Sano H, Iye Y (2011) Superconductivity in boron-doped carbon nanotubes. J Supercond Novel Magn 24(1–2):111Google Scholar
  104. 104.
    Owens FJ (2007) Boron and nitrogen doped single walled carbon nanotubes as possible dilute magnetic semiconductors. Nanoscale Res Lett 2(9):447ADSMathSciNetGoogle Scholar
  105. 105.
    Zhou Z, Gao X, Yan J, Song D, Morinaga M (2004) Enhanced lithium absorption in single-walled carbon nanotubes by boron doping. J Phys Chem B 108(26):9023Google Scholar
  106. 106.
    Liu XM, Romero HE, Gutierrez HR, Adu K, Eklund PC (2008) Transparent boron-doped carbon nanotube films. Nano Lett 8(9):2613ADSGoogle Scholar
  107. 107.
    Reinoso C, Berkmann C, Shi L, Debut A, Yanagi K, Pichler T, Ayala P (2019) Toward a predominant Substitutional bonding environment in B-doped single-walled carbon nanotubes. ACS Omega 4(1):1941Google Scholar
  108. 108.
    Reinoso C, Shi L, Domanov 0 RP, Pichler T, Ayala P (2018) Very high borondoping on single-w ed carbon nanotubes from a solid precursor. Carbon 140:259–264Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations