Advertisement

Synthesis of Tridimensional Ensembles of Carbon Nanotubes

  • Miro HaluskaEmail author
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

The topic of this chapter is the synthesis of both aligned and unaligned carbon nanotube bulk ensembles by different methods such as electric arc discharge, laser ablation and chemical vapor deposition methods. First, general requirements for the CNTs synthesis are introduced. Utilization of different types of nucleation centers for nanotube synthesis as well as the role of CNT growth promoters and inhibitors is reviewed. Particular attention is paid to CVD methods which are most easily scalable, they offer a relatively good control over synthesis conditions and a high quality of as produced CNTs. Two general approaches for formation of catalyst for the CVD nanotube synthesis are discussed, namely methods utilizing pre-deposited catalysts or their precursors and methods exploiting an injection of catalyst precursors during the nanotube synthesis. Examples of breakthrough synthesis approaches, fundamental studies and those with best known results are given. The different nanotube fabrication methodologies are reviewed and discussed in details. This may assist readers to select the proper method and synthesis conditions with regards to nanotube targeted application.

Keywords

SWCNT and MWCNT synthesis CNT synthesis methods CVD Catalysts Alignment 

Notes

Acknowledgement

I would like to thank for help, support, fruitful discussions and cooperation to all my colleagues and students from S. Roth group at FKF MPI Stuttgart, D. Carroll group at WFU-Winston-Salem, A. Dietzel group at TU Eindhoven, and Ch. Hierold group at ETH Zurich, who joined my excitement from CNT synthesis and characterization. The valuable suggestions to manuscript from Viera Skakalova, Valentin Döring, Kiran Chikkadi, Matthias Muoth, Christina Wouters, and Stuart Truax are acknowledged. The support from ETH-FIRST and BRNC (Binnig and Rohrer Nanotechnology Center, Ruschlikon/Zurich) operation teams is highly appreciated.

References

  1. 1.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58ADSGoogle Scholar
  2. 2.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605ADSGoogle Scholar
  3. 3.
    Bethune DS, Kiang CH, de Vries MS, Gorman G, Savoy R, Vazquez J et al (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607ADSGoogle Scholar
  4. 4.
    Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled nanotubes by laser vaporization. Chem Phys Lett 243:49–54ADSGoogle Scholar
  5. 5.
    Laplaze D, Bernier P, Maser WK, Flamant G, Guillard T, Loiseau A (1998) Carbon nanotubes: the solar approach. Carbon 36:685–688Google Scholar
  6. 6.
    Kim KS, Cota-Sanchez G, Kingston CT, Imris M, Simard B, Soucy G (2007) Large-scale production of single-walled carbon nanotubes by induction thermal plasma. J Phys D Appl Phys 40:2375–2387ADSGoogle Scholar
  7. 7.
    Tian Y, Zhang Y, Wang B, Ji W, Zhang Y, Xie K (2004) Coal-derived carbon nanotubes by thermal plasma jet. Carbon 42:2597–2601Google Scholar
  8. 8.
    Moothi K, Iyuke SE, Meyyappan M, Falcon R (2012) Coal as a carbon source for carbon nanotube synthesis. Carbon 50:2679–2690Google Scholar
  9. 9.
    Mishra N, Das G, Ansaldo A, Genovese A, Malerba M, Povia M et al (2012) Pyrolysis of waste polypropylene for the synthesis of carbon nanotubes. J Anal Appl Pyrolysis 94:91–98Google Scholar
  10. 10.
    Bazargan A, McKay G (2012) A review – synthesis of carbon nanotubes from plastic wastes. Chem Eng J 195-196:377–391Google Scholar
  11. 11.
    Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32:335–349ADSGoogle Scholar
  12. 12.
    Dai HJ, Rinzler AG, Nikolaev P, Thess A, Colbert DT, Smalley RE (Sep 27 1996) Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem Phys Lett 260:471–475ADSGoogle Scholar
  13. 13.
    Kimura H, Goto J, Yasuda S, Sakurai S, Yumura M, Futaba DN et al (2013) The infinite possible growth Ambients that support Single-Wall carbon nanotube Forest growth. Sci Rep 3:3334ADSGoogle Scholar
  14. 14.
    Hahn J, Han JH, Yoo J-E, Jung HY, Suh JS (2004) New continuous gas-phase synthesis of high purity carbon nanotubes by a thermal plasma jet. Carbon 42:877–883Google Scholar
  15. 15.
    Qin LC, Zhou D, Krauss AR, Gruen DM (1998) Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition. Appl Phys Lett 72:3437ADSGoogle Scholar
  16. 16.
    Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP et al (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282:1105–1107ADSGoogle Scholar
  17. 17.
    Kato T, Hatakeyama R (2010) Growth of single-walled carbon nanotubes by plasma CVD. J Nanotechnol 2010:1–11Google Scholar
  18. 18.
    Lim SH, Luo Z, Shen Z, Lin J (2010) Plasma-assisted synthesis of carbon nanotubes. Nanoscale Res Lett 5:1377–1386ADSGoogle Scholar
  19. 19.
    Harutyunyan AR (2009) The catalyst for growing single-walled carbon nanotubes by catalytic chemical vapor deposition method. J Nanosci Nanotechnol 9:2480–2495Google Scholar
  20. 20.
    Sun HD, Tang ZK, Li G (1999) Synthesis and Raman characterization of mono-sized single-wall carbon nanotubes in one-dimensional channels of AlPO4-5 crystals. Appl Phys A Mater Sci Process 69:381–384ADSGoogle Scholar
  21. 21.
    Yao Y, Feng C, Zhang J, Liu Z (2009) Cloning of single-walled carbon nanotubes via open-end growth mechanism. Nano Lett 9:1673–1677ADSGoogle Scholar
  22. 22.
    Liu J, Wang C, Tu X, Liu B, Chen L, Zheng M et al (2012) Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy. Mol Ther 3:1199Google Scholar
  23. 23.
    Omachi H, Nakayama T, Takahashi E, Segawa Y, Itami K (2013) Initiation of carbon nanotube growth by well-defined carbon nanorings. Nat Chem 5(7):572–576Google Scholar
  24. 24.
    Ding F, Rosén A, Bolton K (2004) The role of the catalytic particle temperature gradient for SWNT growth from small particles. Chem Phys Lett 393:309–313ADSGoogle Scholar
  25. 25.
    Hofmann S, Sharma R, Ducati C, Du G, Mattevi C, Cepek C et al (2007) In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett 7:602–608ADSGoogle Scholar
  26. 26.
    Yoshida H, Takeda S, Uchiyama T, Kohno H, Homma Y (2008) Atomic-scale in-situ observation of carbon nanotube growth from solid state Iron carbide nanoparticles. Nano Lett 8:2082–2086ADSGoogle Scholar
  27. 27.
    Fiawoo MFC, Bonnot AM, Amara H, Bichara C, Thibault-Pénisson J, Loiseau A (2012) Evidence of correlation between catalyst particles and the single-wall carbon nanotube diameter: a first step towards chirality control. Phys Rev Lett 108Google Scholar
  28. 28.
    Amara H, Bichara C (Jun 2017) Modeling the growth of single-wall carbon nanotubes. Top Curr Chem (J) 375:55Google Scholar
  29. 29.
    He M, Magnin Y, Amara H, Jiang H, Cui H, Fossard F et al (2017) Linking growth mode to lengths of single-walled carbon nanotubes. Carbon 113:231–236Google Scholar
  30. 30.
    Jourdain V, Bichara C (2013) Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition. Carbon 58:2–39Google Scholar
  31. 31.
    Tan L-L, Ong W-J, Chai S-P, Mohamed AR (2013) Growth of carbon nanotubes over non-metallic based catalysts: a review on the recent developments. Catal Today 217:1–12Google Scholar
  32. 32.
    Robertson J, Hofmann S, Cantoro M, Parvez A, Ducati C, Zhong G et al (2008) Controlling the catalyst during carbon nanotube growth. J Nanosci Nanotechnol 8:6105–6111Google Scholar
  33. 33.
    Gamaly EG, Ebbesen TW (1995) Mechanism of carbon nanotube formation in the arc discharge. Phys Rev B 52:2083–2089ADSGoogle Scholar
  34. 34.
    Ismagilov RR, Shvets PV, Zolotukhin AA, Obraztsov AN (2013) Growth of a carbon nanotube Forest on silicon using remote plasma CVD. Chem Vap Depos 19:332–337Google Scholar
  35. 35.
    Bandow S, Takizawa M, Hirahara K, Yudasaka M, Iijima S (2001) Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem Phys Lett 337:48–54ADSGoogle Scholar
  36. 36.
    Simon F, Kuzmany H (2006) Growth of single wall carbon nanotubes from 13C isotope labelled organic solvents inside single wall carbon nanotube hosts. Chem Phys Lett 425:85–88ADSGoogle Scholar
  37. 37.
    de los Arcos T, Gunnar Garnier M, Oelhafen P, Mathys D, Won Seo J, Domingo C et al (2004) Strong influence of buffer layer type on carbon nanotube characteristics. Carbon 42:187–190Google Scholar
  38. 38.
    Amama PB, Putnam SA, Barron AR, Maruyama B (2013) Wetting behavior and activity of catalyst supports in carbon nanotube carpet growth. Nanoscale 5:2642–2646ADSGoogle Scholar
  39. 39.
    Forrest GA, Alexander AJ (2008) Quantitative inhibiting effect of Group I–III cations on the growth of carbon nanotubes. Carbon 46:818–821Google Scholar
  40. 40.
    Kiang C-H (2000) Growth of large-diameter single-walled carbon nanotubes. J Phys Chem A 104:2454–2456Google Scholar
  41. 41.
    Haluška M, Skakalova V, Carroll D, Roth S (2005) The influence of sulfur promoter on the production of SWCNTs by the arc-discharge process. AIP Conf Proc 786:87–91ADSGoogle Scholar
  42. 42.
    Haluška M, Hulman M, Hornbostel B, Čech J, Skákalová V, Roth S (2006) Synthesis of SWCNTs for C82 peapods by arc-discharge process using nonmagnetic catalysts. Phys Status Solidi (b) 243:3042–3045ADSGoogle Scholar
  43. 43.
    Huang L, Wu B, Chen J, Xue Y, Liu Y, Kajiura H et al (2011) Synthesis of single-walled carbon nanotubes by an arc-discharge method using selenium as a promoter. Carbon 49:4792–4800Google Scholar
  44. 44.
    Li YL, Kinloch IA, Windle AH (2004) Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304:276–278ADSGoogle Scholar
  45. 45.
    Motta MS, Moisala A, Kinloch IA, Windle AH (2008) The role of Sulphur in the synthesis of carbon nanotubes by chemical vapour deposition at high temperatures. J Nanosci Nanotechnol 8:2442–2449Google Scholar
  46. 46.
    Jung Y, Song J, Huh W, Cho D, Jeong Y (2013) Controlling the crystalline quality of carbon nanotubes with processing parameters from chemical vapor deposition synthesis. Chem Eng J 228:1050–1056Google Scholar
  47. 47.
    Futaba D, Hata K, Yamada T, Mizuno K, Yumura M, Iijima S (2005) Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys Rev Lett 95Google Scholar
  48. 48.
    Xie K, Muhler M, Xia W (2013) Influence of water on the initial growth rate of carbon nanotubes from ethylene over a cobalt-based catalyst. Ind Eng Chem Res 52:14081–14088Google Scholar
  49. 49.
    Zhang R, Zhang Y, Zhang Q, Xie H, Qian W, Wei F (2013) Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution. ACSnano 7:6156–6161Google Scholar
  50. 50.
    Amama PB, Pint CL, McJilton L, Kim SM, Stach EA, Murray PT et al (2009) Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett 9:44–49ADSGoogle Scholar
  51. 51.
    Kim SM, Pint CL, Amama PB, Zakharov DN, Hauge RH, Maruyama B et al (2010) Evolution in catalyst morphology leads to carbon nanotube growth termination. J Phys Chem Lett 1:918–922Google Scholar
  52. 52.
    Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358ADSGoogle Scholar
  53. 53.
    Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220–222ADSGoogle Scholar
  54. 54.
    Farhat S, Hinkov I, Scott CD (2004) Arc process parameters for single-walled carbon nanotube growth and production: experiments and modeling. J Nanosci Nanotechnol 4:377–389Google Scholar
  55. 55.
    Kim HH, Kim HJ (2006) Preparation of carbon nanotubes by DC arc discharge process under reduced pressure in an air atmosphere. Mater Sci Eng B 133:241–244Google Scholar
  56. 56.
    Lange H, Huczko A, Sioda M, Louchev O (2003) Carbon arc plasma as a source of nanotubes: emission spectroscopy and formation mechanism. J Nanosci Nanotechnol 3:51–62Google Scholar
  57. 57.
    Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY et al (1996) Large-scale synthesis of aligned carbon nanotubes. Science 274:1701–1703ADSGoogle Scholar
  58. 58.
    Gangele A, Sharma CS, Pandey AK (2017) Synthesis of patterned vertically aligned carbon nanotubes by PECVD using different growth techniques: a review. J Nanosci Nanotechnol 17:2256–2273Google Scholar
  59. 59.
    Hofmann S, Ducati C, Kleinsorge B, Robertson J (2003) Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates. Appl Phys Lett 83:4661–4663ADSGoogle Scholar
  60. 60.
    Fan S (1999) Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283:512–514ADSGoogle Scholar
  61. 61.
    Zhong G, Warner JH, Fouquet M, Robertson AW, Chen B, Robertson J (2012) Growth of ultrahigh density single-walled carbon nanotube forests by improved catalyst design. ACSnano 6:2893–2903Google Scholar
  62. 62.
    Jiang K, Li Q, Fan S (2002) Spinning continuous carbon nanotube yarns. Nature 419:801ADSGoogle Scholar
  63. 63.
    Zhang X, Jiang K, Feng C, Liu P, Zhang L, Kong J et al (2006) Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv Mater 18:1505–1510Google Scholar
  64. 64.
    Zhang M, Atkinson KR, Baughman RH (2004) Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306:1358–1361ADSGoogle Scholar
  65. 65.
    Cui Y, Wang B, Zhang M (2013) Optimizing reaction condition for synthesizing spinnable carbon nanotube arrays by chemical vapor deposition. J Mater Sci 48:7749–7756ADSGoogle Scholar
  66. 66.
    Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S (2004) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362–1364ADSGoogle Scholar
  67. 67.
    Yasuda S, Arakawa K, Futaba DN, Yumura M, Yamada T, Satou J et al (2009) Improved and large area single-walled carbon nanotube Forest growth by controlling the gas flow direction. ACSnano 3:4164–4170Google Scholar
  68. 68.
    Sakurai S, Inaguma M, Futaba DN, Yumura M, Hata K (2013) Diameter and density control of single-walled carbon nanotube forests by modulating Ostwald ripening through decoupling the catalyst formation and growth processes. SmallGoogle Scholar
  69. 69.
    Krause M, Haluška M, Abrasonis G, Gemming S (2012) SWCNT growth from C:Ni nanocomposites. Phys Status Solidi (b) 249:2357–2360ADSGoogle Scholar
  70. 70.
    Melkhanova S, Haluska M, Hubner R, Kunze T, Keller A, Abrasonis G et al (2016) Carbon : nickel nanocomposite templates - predefined stable catalysts for diameter-controlled growth of single-walled carbon nanotubes. Nanoscale 8:14888–14897ADSGoogle Scholar
  71. 71.
    Chikkadi K, Mattmann M, Muoth M, Durrer L, Hierold C (2011) The role of pH in the density control of ferritin-based catalyst nanoparticles towards scalable single-walled carbon nanotube growth. Microelectron Eng 88:2478–2480Google Scholar
  72. 72.
    van de Burgt Y (2014) Laser-assisted growth of carbon nanotubes—a review. J Laser Appl 26:032001–032001Google Scholar
  73. 73.
    Haluška M, Bellouard Y, Dietzel A (2008) Time dependent growth of vertically aligned carbon nanotube forest using a laser activated catalytical CVD method. Phys Status Solidi (b) 245:1927–1930ADSGoogle Scholar
  74. 74.
    Haluska M, Bellouard Y, van de Burgt Y, Dietzel A (2010) In situ monitoring of single-wall carbon nanotube laser assisted growth. Nanotechnology 21:75602Google Scholar
  75. 75.
    Xu M, Futaba DN, Yumura M, Hata K (2012) Alignment control of carbon nanotube Forest from random to nearly perfectly aligned by utilizing the crowding Effec. ACSnano 6:5837–5844Google Scholar
  76. 76.
    Shanov V, Cho W, Malik R, Alvarez N, Haase M, Ruff B et al (2013) CVD growth, characterization and applications of carbon nanostructured materials. Surf Coat Technol 230:77–86Google Scholar
  77. 77.
    Sugime H, Esconjauregui S, D'Arsie L, Yang J, Robertson AW, Oliver RA et al (Aug 05 2015) Low-temperature growth of carbon nanotube forests consisting of tubes with narrow inner spacing using co/Al/Mo catalyst on conductive supports. ACS Appl Mater Interfaces 7:16819–16827Google Scholar
  78. 78.
    Youn SK, Frouzakis CE, Gopi BP, Robertson J, Teo KBK, Park HG (2013) Temperature gradient chemical vapor deposition of vertically aligned carbon nanotubes. Carbon 54:343–352Google Scholar
  79. 79.
    Foroughi J, Spinks GM, Wallace GG, Oh J, Kozlov ME, Fang S et al (2011) Torsional carbon nanotube artificial muscles. Science 334:494–497ADSGoogle Scholar
  80. 80.
    Kobashi K, Hirabayashi T, Ata S, Yamada T, Futaba DN, Hata K (2013) Green, scalable, binderless fabrication of a single-walled carbon nanotube nonwoven fabric based on an ancient Japanese paper process. ACS Appl Mater Interfaces 5:12602–12608Google Scholar
  81. 81.
    Sen R, Govindaraj A, Rao CNR (1997) Carbon nanotubes by the metallocene route. Chem Phys Lett 267:276–280ADSGoogle Scholar
  82. 82.
    Zhang ZJ, Wei BQ, Ramanath G, Ajayan PM (2000) Substrate-site selective growth of aligned carbon nanotubes. Appl Phys Lett 77:3764ADSGoogle Scholar
  83. 83.
    Pham QN, Larkin LS, Lisboa CC, Saltonstall CB, Qiu L, Schuler JD et al (2017) Effect of growth temperature on the synthesis of carbon nanotube arrays and amorphous carbon for thermal applications. Phys Status Solidi (a) 214:1600852ADSGoogle Scholar
  84. 84.
    Szymanski L, Kolacinski Z, Wiak S, Raniszewski G, Pietrzak L (2017) Synthesis of carbon nanotubes in thermal plasma reactor at atmospheric pressure. Nanomaterials (Basel) 7(2):45Google Scholar
  85. 85.
    Sundaram RM, Koziol KK, Windle AH (2011) Continuous direct spinning of fibers of single-walled carbon nanotubes with metallic chirality. Adv Mater 23:5064–5068Google Scholar
  86. 86.
    Seraphin S, Zhou D (1994) Single-walled carbon nanotubes produced at high yield by mixed catalysts. Appl Phys Lett 64:2087ADSGoogle Scholar
  87. 87.
    Lambert JM, Ajayan PM, Bernier P, Planeix JM, Brotons V, Coq B et al (1994) Improving conditions towards isolating single-shell carbon nanotubes. Chem Phys Lett 226:364–371ADSGoogle Scholar
  88. 88.
    Huczko A, Lange H, Bystrzejewski M, Baranowski P, Ando Y, Zhao X et al (2006) Effect of graphitization of Fe-doped anode and optical Emision studies. J Nanosci Nanotechnol 6:1319–1324Google Scholar
  89. 89.
    Li J, Kundrapu M, Shashurin A, Keidar M (2012) Emission spectra analysis of arc plasma for synthesis of carbon nanostructures in various magnetic conditions. J Appl Phys 112:024329ADSGoogle Scholar
  90. 90.
    Journet W, Maser K, Bernier P, Loiseau A, de la Chapelle ML, Lefrant S et al (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758ADSGoogle Scholar
  91. 91.
    Saito Y, Tani Y, Miyagawa N, Mitsushima K, Kasuya A, Nishina Y (1998) High yield of single-wall carbon nanotubes by arc discharge using Rh–Pt mixed catalysts. Chem Phys Lett 294:593–598ADSGoogle Scholar
  92. 92.
    Itkis ME, Perea DE, Niyogi S, Rickard SM, Hamon MA, Hu H et al (2003) Purity evaluation of as-prepared single-walled carbon nanotube soot by use of solution-phase near-IR spectroscopy. Nano Lett 3:309–314ADSGoogle Scholar
  93. 93.
    Itkis ME, Perea DE, Niyogi S, Love J, Tang J, Yu A et al (2004) Optimization of the Ni-Y catalyst composition in bulk electric arc synthesis of single-walled carbon nanotubes by use of near-infrared spectroscopy. J Phys Chem B 108:12770–12775Google Scholar
  94. 94.
    Hinkov I, Grand J, Lamy De La Chapelle M, Farhat S, Scott CD, Nikolaev P et al (2004) Effect of temperature on carbon nanotube diameter and bundle arrangement: microscopic and macroscopic analysis. J Appl Phys 95:2029–2037ADSGoogle Scholar
  95. 95.
    Farhat S, Lamy De La Chapelle M, Loiseau A, Scott CD, Lefrant S, Journet C et al (2001) Diameter control of single-walled carbon nanotubes using argon–helium mixture gases. J Chem Phys 115:6752ADSGoogle Scholar
  96. 96.
    Saito Y, Tani Y, Kasuya A (2000) Diameters of single-wall carbon nanotubes depending on helium gas pressure in an arc discharge. J Phys Chem B 104:2495–2499Google Scholar
  97. 97.
    Waldorff EI, Waas AM, Friedmann PP, Keidar M (2004) Characterization of carbon nanotubes produced by arc discharge: effect of the background pressure. J Appl Phys 95:2749–2754ADSGoogle Scholar
  98. 98.
    Keidar M, Levchenko I, Arbel T, Alexander M, Waas AM, Ostrikov K (2008) Increasing the length of single-wall carbon nanotubes in a magnetically enhanced arc discharge. Appl Phys Lett 92:043129ADSGoogle Scholar
  99. 99.
    Keidar M, Levchenko I, Arbel T, Alexander M, Waas AM, Ostrikov KK (2008) Magnetic-field-enhanced synthesis of single-wall carbon nanotubes in arc discharge. J Appl Phys 103:094318ADSGoogle Scholar
  100. 100.
    Su Y, Zhang Y, Wei H, Qian B, Yang Z, Zhang Y (2012) Length-controlled synthesis of single-walled carbon nanotubes by arc discharge with variable cathode diameters. Physica E 44:1548–1551ADSGoogle Scholar
  101. 101.
    Takizawa M, Bandow S, Torii T, Iijima S (1999) Effect of environment temperature for synthesizing single-wall carbon nanotubes by arc vaporization method. Chem Phys Lett 302:146–150ADSGoogle Scholar
  102. 102.
    Roch A, Jost O, Schultrich B, Beyer E (2007) High-yield synthesis of single-walled carbon nanotubes with a pulsed arc-discharge technique. Phys Status Solidi (b) 244:3907–3910ADSGoogle Scholar
  103. 103.
    Ishigami M, Cumings J, Zettl A, Chen S (2000) A simple method for the continuous production of carbon nanotubes. Chem Phys Lett 319:457–459ADSGoogle Scholar
  104. 104.
    Antisari MV, Marazzi R, Krsmanovic R (2003) Synthesis of multiwall carbon nanotubes by electric arc discharge in liquid environments. Carbon 41:2393–2401Google Scholar
  105. 105.
    Ryzhkov VA (2002) Carbon nanotube production by a cracking of liquid hydrocarbons. Phys B Condens Matter 323:324–326ADSGoogle Scholar
  106. 106.
    Zhao X, Kadoya T, Ikeda T, Suzuki T, Inoue S, Ohkohchi M et al (2007) Development of Fe-doped carbon electrode for mass-producing high-yield single-wall carbon nanotubes. Diam Relat Mater 16:1101–1105ADSGoogle Scholar
  107. 107.
    Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163ADSGoogle Scholar
  108. 108.
    Hornbostel B, Haluska M, Cech J, Dettlaff U, Roth S (2006) Arc discharge and laser ablation synthesis of single-walled carbon nanotubes. NATO Science Series II 2:1–19Google Scholar
  109. 109.
    Bandow S, Asaka S, Saito Y, Rao AM, Grigorian L, Richter E et al (1998) Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. 80:3779–3782Google Scholar
  110. 110.
    Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J et al (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487ADSGoogle Scholar
  111. 111.
    Rinzler AG, Liu J, Dai H, Nikolaev P, Huffman CB, Rodrıguez-Macıas FJ et al (1998) Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A Mater Sci Process 67:29–37ADSGoogle Scholar
  112. 112.
    Kingston CT, Jakubek ZJ, Dénommée S, Simard B (2004) Efficient laser synthesis of single-walled carbon nanotubes through laser heating of the condensing vaporization plume. Carbon 42:1657–1664Google Scholar
  113. 113.
    Jost O, Gorbunov A, Liu X, Pompe W, Fink J (2004) Single-walled carbon nanotube diameter. J Nanosci Nanotechnol 4:433–440Google Scholar
  114. 114.
    Ruemmeli MH, Kramberger C, Loeffler M, Jost O, Bystrzejewski M, Grueneis A et al (2007) Catalyst volume to surface area constraints for nucleating carbon nanotubes. J Phys Chem B 111:8234–8241Google Scholar
  115. 115.
    Maser WK, Munoz E, Benito AM, Martınez MT, de la Fuente GF, Maniette Y et al (1998) Production of high-density single-walled nanotube material by a simple laser-ablation method. Chem Phys Lett 292:587–593ADSGoogle Scholar
  116. 116.
    Maser WK, Benito AM, Munoz E, de Val GM, Martınez MT, Larrea A et al (2001) Production of carbon nanotubes by CO2-laser evaporation of various carbonaceous feedstock materials. Nanotechnology 12:147–151ADSGoogle Scholar
  117. 117.
    Braidy N, El Khakani MA, Botton GA (2002) Single-wall carbon nanotubes synthesis by means of UV laser vaporization. Chem Phys Lett 354:88–92ADSGoogle Scholar
  118. 118.
    Kusaba M, Tsunawaki Y (2006) Production of single-wall carbon nanotubes by a XeCl excimer laser ablation. Thin Solid Films 506-507:255–258ADSGoogle Scholar
  119. 119.
    Kusaba M, Tsunawaki Y (2007) Raman spectroscopy of SWNTs produced by a XeCl excimer laser ablation at high temperatures. Appl Surf Sci 253:6330–6333ADSGoogle Scholar
  120. 120.
    Arepalli S, Scott CD (1999) Spectral measurements in production of single-wall carbon nanotubes by laser ablation. Chem Phys Lett 302:139–145ADSGoogle Scholar
  121. 121.
    Kokai F, Takahashi K, Yudasaka M, Iijima S (2000) Laser ablation of graphite-co/Ni and growth of Single-Wall carbon nanotubes in vortexes formed in an Ar atmosphere. J Phys Chem B 104:6777–6784Google Scholar
  122. 122.
    Puretzky AA, Geohegan DB, Fan X, Pennycook SJ (2000) In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization. Appl Phys Lett 76:182ADSGoogle Scholar
  123. 123.
    Puretzky A, Schittenhelm H, Fan X, Lance M, Allard L, Geohegan D (2002) Investigations of single-wall carbon nanotube growth by time-restricted laser vaporization. Phys Rev B 65Google Scholar
  124. 124.
    Geohegan DB, Puretzky AA, Styers-Barnett D, Hu H, Zhao B, Cui H et al (2007) In situ time-resolved measurements of carbon nanotube and nanohorn growth. Phys Status Solidi (b) 244:3944–3949ADSGoogle Scholar
  125. 125.
    Puretzky AA, Styers-Barnett DJ, Rouleau CM, Hu H, Zhao B, Ivanov IN et al (2008) Cumulative and continuous laser vaporization synthesis of single wall carbon nanotubes and nanohorns. Applied Physics A 93:849–855Google Scholar
  126. 126.
    Cochon JL, Gavillet J, de la Chapelle ML, Loiseau A, Ory M, Pigache D (1999) A continuous wave CO2 laser reactor for nanotubes synthesis. In: Kuzmany H, Fink J, Mehring M, Roth S (eds.), AIP conference proceedings, electronic properties of novel materials– Science and technology of molecular nanostructures, vol. 486, pp. 237–240,Google Scholar
  127. 127.
    Dorval N, Foutel-Richard A, Cau M, Loiseau A, Attal-Trétout B, Cochon JL et al (2004) In-Situ optical analysis of the gas phase during the formation of carbon nanotubes. J Nanosci Nanotechnol 4:450–462Google Scholar
  128. 128.
    Cau M, Dorval N, Attal-Trétout B, Cochon JL, Foutel-Richard A, Loiseau A et al (2010) Formation of carbon nanotubes: in situ optical analysis using laser-induced incandescence and laser-induced fluorescence. Phys Rev B 81:165416ADSGoogle Scholar
  129. 129.
    Dresselhaus MS, Dresselhaus G, Sugihara K, Spain IL, Goldberg HA (1988) Synthesis of graphite fibers and filaments. In: Graphite fibers and filaments, springer series in materials science, vol 5. Springer, Berlin/Heidelberg, pp 12–34Google Scholar
  130. 130.
    Satishkumar BC, Govindaraj A, Sen R, Rao CNR (1998) Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures. Chem Phys Lett 293:47–52ADSGoogle Scholar
  131. 131.
    Bladh K, Falk LKL, Rohmund F (2000) Onthe iron-catalysed growth of single-walled carbon nanotubes and encapsulated metal particles in the gas phase. Appl Phys A Mater Sci Process 70:317–322ADSGoogle Scholar
  132. 132.
    Ci L, Wei B, Liang J, Xu C, Wu D (1999) Preparation of carbon nanotubules by the foating catalyst method. J Mater Sci Lett 18:797–799Google Scholar
  133. 133.
    Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA et al (1999) Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett 313:91–97ADSGoogle Scholar
  134. 134.
    Bronikowski MJ, Willis PA, Colbert DT, Smith KA, Smalley RE (2001) Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: a parametric study. J Vac Sci Technol A: Vac Surf Films 19:–1800ADSGoogle Scholar
  135. 135.
    Nikolaev P (2004) Gas-phase production of single-walled carbon nanotubes from carbon monoxide: a review of the HiPco process. J Nanosci Nanotechnol 4:307–316Google Scholar
  136. 136.
    Saito T, Ohshima S, Okazaki T, Ohmori S, Yumura M, Iijima S (2008) Selective diameter control of single-walled carbon nanotubes in the gas-phase synthesis. J Nanosci Nanotechnol 8:6153–6157Google Scholar
  137. 137.
    Nasibulin AG, Moisala A, Brown DP, Jiang H, Kauppinen EI (2005) A novel aerosol method for single walled carbon nanotube synthesis. Chem Phys Lett 402:227–232ADSGoogle Scholar
  138. 138.
    Nasibulin AG, Shandakov SD, Timmermans MY, Kauppinen EI (2011) Aerosol synthesis and applications of single-walled carbon nanotubes. Russ Chem Rev 80:771–786ADSGoogle Scholar
  139. 139.
    Chiang W-H, Sankaran RM (2009) Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1−x nanoparticles. Nat Mater 8:882–886ADSGoogle Scholar
  140. 140.
    Chiang W-H, Sakr M, Gao XPA, Sankaran RM (2012) Nanoengineering NixFe1-x catalysts for gas-phase, selective synthesis of semiconducting single-walled carbon nanotubes. ACSnano 3:4023–4032Google Scholar
  141. 141.
    Mikhalchan A, Fan Z, Tran TQ, Liu P, Tan VBC, Tay T-E et al (2016) Continuous and scalable fabrication and multifunctional properties of carbon nanotube aerogels from the floating catalyst method. Carbon 102:409–418Google Scholar
  142. 142.
    Tavoulareas ES (1991) Fluidized-bed combustion technology. Annu Rev Energy Environ 16:25–57Google Scholar
  143. 143.
    Hernadi K, Fonseca A, Nagy JB, Bernaerts D, Lucay AA (1996) Fe-catalyzed carbon nanotube formation. Carbon 34:1249–1257Google Scholar
  144. 144.
    Venegoni D, Serp P, Feurer R, Kihn Y, Vahlas C, Kalck P (2002) Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor. Carbon 40:1799–1807Google Scholar
  145. 145.
    Li Y-L, Kinloch IA, Shaffer MSP, Geng J, Johnson B, Windle AH (2004) Synthesis of single-walled carbon nanotubes by a fluidized-bed method. Chem Phys Lett 384:98–102ADSGoogle Scholar
  146. 146.
    Yun S, Qian W, Cui C, Yu Y, Zheng C, Liu Y et al (2013) Highly selective synthesis of single-walled carbon nanotubes from methane in a coupled downer-turbulent fluidized-bed reactor. J Energy Chem 22:567–572Google Scholar
  147. 147.
    MacKenzie KJ, Dunens OM, Harris AT (2010) An updated review of synthesis parameters and growth mechanisms for carbon nanotubes in fluidized beds. Ind Eng Chem Res 49:5323–5338Google Scholar
  148. 148.
    Dasgupta K, Joshi JB, Banerjee S (2011) Fluidized bed synthesis of carbon nanotubes – a review. Chem Eng J 171:841–869Google Scholar
  149. 149.
    Kim KS, Seo JH, Nam JS, Ju WT, Hong SH (2005) Production of hydrogen and carbon black by methane decomposition using DC-RF hybrid thermal plasmas. IEEE Trans Plasma Sci 33:813–823ADSGoogle Scholar
  150. 150.
    Shahverdi A, Kim KS, Alinejad Y, Soucy G (2012) In situ purity enhancement/surface modification of single-walled carbon nanotubes synthesized by induction thermal plasma. J Nanopart Res 14Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Micro and Nanosystems, D-MAVT, ETH ZürichZürichSwitzerland

Personalised recommendations