Advertisement

Chemical Sensors for VOC Detection in Indoor Air: Focus on Formaldehyde

  • Marc DebliquyEmail author
  • Arnaud Krumpmann
  • Driss Lahem
  • Xiaohui Tang
  • Jean-Pierre Raskin
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

This chapter will present a brief overview of the current sensors for VOC detection, in particular formaldehyde which has become one of the most problematic gases in indoor air. Many sensing technologies were exploited for this purpose but, in this chapter, we will focus on the impedimetric sensors. These sensors consist in a sensitive layer deposited on an insulating substrate fitted with a pair of electrodes. The detection is based on the change of conductivity of the sensitive layer due to surface interactions with the target gas provoking an electron transfer. This kind of sensor acts as a simple variable resistance and is often called chemiresistor. By principle, these sensors are simple, easy to integrate in classical electronics and cheap. Considering the nature of the sensitive coating, we can distinguish several families: metal oxide sensors, semiconductor polymer sensors or based on graphene. All 3 types of sensors will be described in this chapter.

Keywords

Sensors Volatile organic compounds Metal oxides 

References

  1. 1.
    IARC, [Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol. (2006) IARC monographs on the evaluation of carcinogenic risks to humans, vol. 88], World Health Organization, Lyon, 39–325Google Scholar
  2. 2.
    World Health Organization (2010) Regional Office for Europe, “WHO guidelines for indoor air quality: selected pollutants”, Geneva, ISBN: 9789289002134Google Scholar
  3. 3.
    Vairavamurthy A, Roberts JM, Newman L (1992) Methods for determination of low molecular weight compounds in the atmosphere: a review. Atmos Environ 26A:1965–1993ADSGoogle Scholar
  4. 4.
    Chung PR, Tzeng CT et al (2013) Formaldehyde gas sensors: a review. Sensors 13:4468–4484Google Scholar
  5. 5.
    Fleet B, Gunasingham H (1992) Electrochemical sensors for monitoring environmental pollutants. Talanta 39:1449–1457Google Scholar
  6. 6.
    Sato T, Plashnitsa VV, Utiyama M, Miura (2010) N Potentiometric YSZ-based sensor using NiO sensing electrode aiming at detection of volatile organic compounds (VOCs) in air environment. Electrochem Commun 12:524–526Google Scholar
  7. 7.
    Mead MI, Popoola OAM et al (2013) The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. Atmos Environ 70:186–203ADSGoogle Scholar
  8. 8.
    Si P, Mortensen J, Komolov A et al (2007) Polymer coated quartz crystal microbalance sensors for detection of volatile organic compounds in gas mixtures. Anal Chim Acta 597:223–230Google Scholar
  9. 9.
    Shafiq Islam AKM, Ismail Z et al (2005) Transient parameters of a coated quartz crystal microbalance sensor for the detection of volatile organic compounds (VOCs). Sensors Actuators B109:238–243Google Scholar
  10. 10.
    Khot LR, Panigrahi S, Lin D (2011) Development and evaluation of piezoelectric-polymer thin film sensors for low concentration detection of volatile organic compounds related to food safety applications. Sensors Actuators B Chem 153:1–10Google Scholar
  11. 11.
    Fan X, Du B (2012) Selective detection of trace p-xylene by polymer-coated QCM sensors. Sensors Actuators B166–167:753–760Google Scholar
  12. 12.
    Clifford KH, Lindgren RE et al (2003) Development of a surface acoustic wave sensor for in-situ monitoring of volatile organic compounds. Sensors 3:236–247Google Scholar
  13. 13.
    Fang M, Vetelino K, Rothery M et al (1999) Detection of organic chemicals by SAW sensor array. Sensors Actuators B56:155–157Google Scholar
  14. 14.
    Fernández MJ, Fontecha JL, Sayago I et al (2007) Discrimination of volatile compounds through an electronic nose based on ZnO SAW sensors. Sensors Actuators B127:277–283Google Scholar
  15. 15.
    Wolfbeis OS (2002) Fiber-optic chemical sensors and biosensors. Anal Chem 74:2663–2678Google Scholar
  16. 16.
    Elosua C, Matias IR, Bariain C et al (2006) Volatile organic compound optical fiber sensors: a review. Sensors 6:1440–1465Google Scholar
  17. 17.
    Yoon J, Chae SK, Kim JM (2007) Colorimetric sensors for volatile organic compounds (VOCs) based on conjugated polymer-embedded electrospun fibers. J Am Chem Soc 129:3038–3039Google Scholar
  18. 18.
    González-Vila Á, Debliquy M, Lahem D et al (2017) Molecularly imprinted electropolymerization on a metal-coated optical fiber for gas sensing applications. Sensors Actuators B244:1145–1151Google Scholar
  19. 19.
    Patel SV, Mlsna TE et al (2003) Chemicapacitive microsensors for volatile organic compound detection. Sensors Actuators B96:541–553Google Scholar
  20. 20.
    Lee DS, Jung JK, Lim J. W et al (2001) Recognition of volatile organic compounds using SnO2 sensor array and pattern recognition analysis. Sensors Actuators B77: 228–236Google Scholar
  21. 21.
    Zhang WM, Hu JS et al (2007) Detection of VOCs and their concentrations by a single SnO2sensor using kinetic information. Sensors Actuators B123:454–460Google Scholar
  22. 22.
    Mishra RK, Sahay PP (2012) Synthesis characterization and alcohol sensing property of Zn-doped SnO2 nanoparticles. Ceram Int 38:2295–2304Google Scholar
  23. 23.
    Zeng W, Tian-Mo L (2010) Gas-sensing properties of SnO2–TiO2-based sensor for volatile organic compound gas and its sensing mechanism. Phys B Condens Matter 405:1345–1348ADSGoogle Scholar
  24. 24.
    Lahem D, Lontio FR et al (2016) Formaldehyde gas sensor based on nanostructured nickel oxide and the microstructure effects on its response. In: IC-MAST2015 IOP Conf. Series: materials science and engineering 108Google Scholar
  25. 25.
    Zhang YM, Lin YT et al (2014) A high sensitivity gas sensor for formaldehyde based on silver doped lanthanum ferrite. Sensors Actuators B190:171–176Google Scholar
  26. 26.
    Neri G (2015) First fifty years of chemoresistive gas sensors. Chemosensors 3:1–20MathSciNetGoogle Scholar
  27. 27.
    Moseley PT, Norris J, Williams DE (1991) Techniques and mechanisms in gas sensing. In: Adam HilgerGoogle Scholar
  28. 28.
    Korotcenkov G, Cho BK (2017) Metal oxide composites in conductometric gas sensors: achievements and challenges. Sensors Actuators B 244:182–210Google Scholar
  29. 29.
    Kanan SM, El-Kadri OM et al (2009) Semiconducting metal oxide based sensors for selective gas pollutant detection. Sensors 9:8158–8196CrossRefGoogle Scholar
  30. 30.
    Decroly A, Krumpmann A, Debliquy M et al (2016) Nanostructured TiO2 Layers for Photovoltaic and Gas Sensing Applications, INTECH Book “Green Nanotechnology”. ISBN 978-953-51-4692-6Google Scholar
  31. 31.
    Seiyama T, Kato A (1962) A new detector for gaseous components using semiconductor thin film. Anal Chem 34:1502–1503Google Scholar
  32. 32.
    Seiyama T (1988) Chemical sensors-current status and future outlook. In: Seiyama T (ed) Chemical Sensor Technology, vol 1. Elsevier, AmsterdamGoogle Scholar
  33. 33.
    Yamazoe N (1991) New approaches for improving semiconductor gas sensors. Sensors Actuators B Chem 5:7–19Google Scholar
  34. 34.
    Shimizu Y, Egashira M (1999) Basic aspects and challenges of semiconductor gas sensors. MRS Bull 24:18–24Google Scholar
  35. 35.
    Yamazoe N (2005) Toward innovations of gas sensor technology. Sensors Actuators B108:2–14Google Scholar
  36. 36.
    Gurlo A, Bârsan N, Weimar U (2006) In: Fierro JLG (ed) Gas sensors based on semiconductiong metal oxides. In metal oxides: chemistry and applications. CRC Press, Boca Raton, p 683Google Scholar
  37. 37.
    Aleixandre M, Gerboles M (2012) Review of small commercial sensors for indicative monitoring of ambient gas. Chem Eng Trans 30:169–174Google Scholar
  38. 38.
    Bârsan N, Hübner M, Weimar U (2011) Conduction mechanisms in SnO2 based polycrystalline thick film gas sensors exposed to CO and H2 in different oxygen backgrounds. Sensors Actuators B 157:510–517Google Scholar
  39. 39.
    Bârsan N, Tomescu A (1995) Calibration Procedure for SnO2-based Gas Sensors. Thin Solid Films 259:91–95ADSGoogle Scholar
  40. 40.
    Niebling G, Schlachter A (1995) Qualitative and quantitative gas analysis with non-linear interdigital sensor arrays and artificial neural networks. Sensors and Actuators B26–27:289Google Scholar
  41. 41.
    Yamaura H, Tamaki J, Moriya K et al (1997) Highly selective CO sensor using indium oxide doubly promoted by cobalt oxide and gold. J Electrochem Soc 144Google Scholar
  42. 42.
    Mochida T, Kikuchi K, Kondo T, Ueno H, Matsuura Y (1995) Highly sensitive and selective H2S gas sensor from r.f. sputtered SnO2 thin film. Sensors Actuators B 25:433–437Google Scholar
  43. 43.
    Tricoli A, Righettoni M, Pratsinis SE (2009) Minimal cross-sensitivity to humidity during ethanol detection by SnO2-TiO2 solid solutions. Nanotechnology 20:315502ADSGoogle Scholar
  44. 44.
    Cederquist A, Gibbons E, Meitzler A (1976) Characterization of Zirconia and Titania Engine Exhaust Gas Sensors for air/fuel feedback control systems. SAR Tech Pap.  https://doi.org/10.4271/7602
  45. 45.
    Kolmakov A, Moskovits M (2004) Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu Rev Mater Res 34:151–180ADSGoogle Scholar
  46. 46.
    Arafat MM, Dinan B et al (2012) Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors 12:7207–7258Google Scholar
  47. 47.
    Thong LV, Hoa ND et al (2010) On-chip fabrication of SnO2-nanowire gas sensor: the effect of growth time on sensor performance. Sensors Actuators B Chem 146:361–367Google Scholar
  48. 48.
    Huang MH, Mao S, Feick H et al (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899ADSGoogle Scholar
  49. 49.
    Yang Z, Li LM, Wan Q et al (2008) High-performance ethanol sensing based on an aligned assembly of ZnO nanorods. Sensors Actuators B Chem 135:57–60Google Scholar
  50. 50.
    Wan Q, Li QH, Chen YJ et al (2004) Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl Phys Lett 84:3654–3656ADSGoogle Scholar
  51. 51.
    Jones T, Bott B, Thorpe S (1989) Fast response metal phthalocyanine-based gas sensors. Sensors Actuators B 17:467–474Google Scholar
  52. 52.
    Simon J, André JJ (1985) Molecular semiconductors. Springer, Berlin/HeidelbergGoogle Scholar
  53. 53.
    Wright JD (1991) Gas adsorption on phthalocyanines and its effects on electrical properties. Prog Surf Sci 31:1–60ADSGoogle Scholar
  54. 54.
    Mukhopadhyay S, Hogarth CA (1994) Gas sensing properties of phthalocyanine Langmuir–Blodgett films. Adv Mater 6:162–164Google Scholar
  55. 55.
    Capone S, Mongelli S et al (1999) Gas sensitivity measurements on NO2 sensors based on Copper(II) tetrakis(n-butylaminocarbonyl) phthalocyanine LB films. Langmuir 15:1748–1753Google Scholar
  56. 56.
    Simon J, Bouvet M, Bassoul P (1994) The encyclopedia of advanced materials. Pergamon, Oxford, pp 1680–1692Google Scholar
  57. 57.
    Rodriguez-Mendez ML, Aroca R, Desaja JA (1993) Electrochromic and gas adsorption properties of Langmuir-Blodgett films of lutetium bisphthalocyanine complexes. Chem Mater 5(7):933–937Google Scholar
  58. 58.
    Weiss R, Fischer J (2006) Lanthanide phthalocyanine complexes. The porphyrin handbook, 1st ed., vol. 16, Kadish K, Smith KM, Guilard R (eds); Academic Press Inc., New York, pp 171–246Google Scholar
  59. 59.
    Paolo Bondavallia P, Legagneux P, Pribat D (2009) Carbon nanotubes based transistors as gas sensors: state of the art and critical review. Sensors Actuators B 140:304–318Google Scholar
  60. 60.
    Espinosa EH, Ionescu R, Chambon B et al (2007) Hybrid metal oxide and multiwall carbon nanotube films for low temperature gas sensing. Sensors Actuators B 127:137–142Google Scholar
  61. 61.
    Helbling T, Pohle R, Durrer L et al (2008) Sensing NO2 with individual suspended single-walled carbon nanotubes. Sensors Actuators B 132:491–497Google Scholar
  62. 62.
    Bittencourt C, Felten A, Espinosa EH et al (2006) Evaporation of WO3 on carbon nanotube films: a new hybrid film. Smart Mater Struct 15:1555–1560ADSGoogle Scholar
  63. 63.
    Ionescu R, Espinosa EH et al (2006) Oxygen functionalisation of MWNT and their use as gas sensitive thick-film layers. Sensors Actuators B 113:36–46Google Scholar
  64. 64.
    Mu H, Zhang Z et al (2014) High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films. Appl Phys Lett 105:033107ADSGoogle Scholar
  65. 65.
    Zhua BL, Xie CS, Wu J et al (2006) Influence of Sb, In and Bi dopants on the response of ZnO thick films to VOC’s. Mater Chem Phys 96:459–465ADSGoogle Scholar
  66. 66.
    Elmi I, Zampolli S et al (2008) Development of ultra-low-power consumption MOX sensors with ppb-level VOC detection capabilities for emerging applications. Sensors Actuators B Chem 135:342–351Google Scholar
  67. 67.
    Daza L, Dassy S, Delmon B (1993) Chemical sensors based on SnO2 and WO3 for the detection of formaldehyde: cooperative effects. Sensors Actuators B Chem 10:99–105Google Scholar
  68. 68.
    Lee DS, Jung JK et al (2001) Recognition of volatile organic compounds using SnO2 sensor array and pattern recognition analysis. Sensors Actuators B 77:228–236Google Scholar
  69. 69.
    Zhu BL, Xie CS, Wang WY (2004) Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO2. Mater Lett 58:624–629Google Scholar
  70. 70.
    Srivastava AK (2003) Detection of volatile organic compounds (VOCs) using SnO2 gas-sensor array and artificial neural network. Sensors Actuators B 96:24–37Google Scholar
  71. 71.
    Lai X, Wang D et al (2010) Ordered arrays of bead-chain-like In2O3 nanorods and their enhanced sensing performance for formaldehyde. Chem Mater 22:3033–3042Google Scholar
  72. 72.
    Castro-Hurtado I, Herrán J et al (2011) Studies of influence of structural properties and thickness of NiO thin films on formaldehyde detection. Thin Solid Films 520:947–952ADSGoogle Scholar
  73. 73.
    Gou X, Wang G et al (2008) Chemical synthesis, characterisation and gas sensing performance of copper oxide nanoribbons. J Mater Chem 18:965–969Google Scholar
  74. 74.
    Dirksen JA, Duval K, Ring TA (2001) NiO thin film formaldehyde gas sensor. Sensors Actuators B Chem 80:106–115Google Scholar
  75. 75.
    Lee CY, Chiang CM, Wang YH et al (2007) A self-heating gas sensor with integrated NiO thin film for formaldehyde detection. Sensors Actuators B Chem 122:503–510Google Scholar
  76. 76.
    Lahem D, Lontio FR et al (2016) Formaldehyde gas sensor based on nanostructured nickel oxide and the microstructure effects on its response. In: Proceedings IC-MAST2015 IOP Conf. Series: materials science and engineering 108Google Scholar
  77. 77.
    Zhang L, Hu JF et al (2005) Formaldehyde sensing characteristics of perovskite La0.68Pb0.32FeO3 nano-materials. Physica B 370:259–263ADSGoogle Scholar
  78. 78.
    Wang J, Liu L, Cong SY et al (2008) An enrichment method to detect low concentration formaldehyde. Sensors Actuators B Chem 134:1010–1015Google Scholar
  79. 79.
    Wang J, Zhang P et al (2009) Silicon-based micro-gas sensors for detecting formaldehyde. Sensors Actuators B Chem 136:399–404Google Scholar
  80. 80.
    Lv P, Tang ZA et al (2008) Study on a microgas sensor with SnO2–NiO sensitive film for indoor formaldehyde detection. Sensors Actuators B Chem 132:74–80Google Scholar
  81. 81.
    Han N, Tian Y, Wu X et al (2009) Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO. Sensors Actuators B Chem 138:228–235Google Scholar
  82. 82.
    Han N, Chai L, Wang Q et al (2010) Evaluating the doping effect of Fe, Ti and Sn on gas sensing property of ZnO. Sensors Actuators B Chem 147:525–530Google Scholar
  83. 83.
    Chen T, Zhou Z, Wang Y (2008) Effects of calcining temperature on the phase structure and the formaldehyde gas sensing properties of CdO-mixed In2O3. Sensors Actuators B Chem 135:219–223Google Scholar
  84. 84.
    Huang S, Qin H, Song P et al (2007) The formaldehyde sensitivity of LaFe1−xZnxO3-based gas sensor. J Mater Sci 42:9973–9977ADSGoogle Scholar
  85. 85.
    Zeng W, Tianmo Liu T et al (2009) Selective detection of formaldehyde gas using a Cd-doped TiO2-SnO2 sensor. Sensors 9:9029–9038Google Scholar
  86. 86.
    Wollenstein J, Plaza JA et al (2003) A novel single chip thin film metal oxide array. Sensors Actuators B Chem 93:350–355Google Scholar
  87. 87.
    Lee CY, Chiang CM, Chou PC et al (2005) A novel microfabricated formaldehyde gas sensor with NiO thin film, sensors for industry conference p, pp 1–5Google Scholar
  88. 88.
    Wang YH, Lee CY et al (2008) Enhanced sensing characteristics in MEMS-based formaldehyde gas sensors. Microsyst Technol 14:995–1000ADSGoogle Scholar
  89. 89.
    Lin S, Li D et al (2011) A selective room temperature formaldehyde gas sensor using TiO2 nanotube arrays. Sensors Actuators B 156:505–509Google Scholar
  90. 90.
    Peng L, Zhao Q et al (2009) Ultraviolet-assisted gas sensing: a potential formaldehyde detection approach at room temperature based on zinc oxide nanorods. Sensors Actuators B 136:80–85Google Scholar
  91. 91.
    Mu H, Zhang Z et al (2014) Highly sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films. Appl Phys Lett 105:033107ADSGoogle Scholar
  92. 92.
    Adhikari B, Majumdar S (2004) Polymers in sensor applications. Prog Polym Sci 29:699–766Google Scholar
  93. 93.
    Bartlett PN, Archer PB et al (1989) Conducting polymer gas sensors Part I: fabrication and characterization. Sensors Actuators B Chem 19:125–140Google Scholar
  94. 94.
    Bartlett PN, Sk L-C (1989) Conducting polymer gas sensors Part II: response of polypyrrole to methanol vapour. Sensors Actuators B Chem 19:141–150Google Scholar
  95. 95.
    Bartlett PN, Sk L-C (1989) Conducting polymer gas sensors Part III: results for four different polymers and five different vapours. Sensors Actuators B Chem 20:287–292Google Scholar
  96. 96.
    Agbor NE, Petty MC et al (1995) Polyaniline thin films for gas sensing. Sensors Actuators B Chem 28:173–179Google Scholar
  97. 97.
    Anitha G, Subramanian E (2005) Recognition and exposition of intermolecular inter-action between CH2Cl2 and CHCl3 by conducting polyaniline materials. Sensors Actuators B Chem 107:605–615Google Scholar
  98. 98.
    Li ZF, Blum FD, Bertino MF et al (2008) One-step fabrication of a polyaniline nanofiber vapor sensor. Sensors Actuators B Chem 134:31–35Google Scholar
  99. 99.
    Antwi-Boampong S, Bel Bruno JJ (2013) Detection of formaldehyde vapor using conductive polymer films. Sensors Actuators B Chem 182:300–306Google Scholar
  100. 100.
    Lange U, Roznyatovskaya NV, Mirsky VM (2008) Conducting polymers in chemical sensors and arrays. Anal Chim Acta 614:1–26Google Scholar
  101. 101.
    Guadarrama A, Rodrıguez-Méndez ML et al (2001) Electronic nose based on conducting polymers for the quality control of the olive oil aroma: discrimination of quality, variety of olive and geographic origin. Anal Chim Acta 432:283–292Google Scholar
  102. 102.
    Haupt K, Linares AV et al (2011) In: Haupt K (ed) Molecularly imprinted polymers. Springer, Berlin Heidelberg, pp 1–28Google Scholar
  103. 103.
    Vasapollo G, Del Sole R et al (2011) Molecularly imprinted polymers: present and future prospective. Int J Mol Sci 12:5908–5945Google Scholar
  104. 104.
    Kröger S, Tumer APF et al (1999) Imprinted polymerbased sensor system for herbicides using differential-pulse voltammetry on screen-printed electrodes. Anal Chem 71:3698–3702Google Scholar
  105. 105.
    Luo C, Liu M, Mo Y et al (2001) Thickness-shear mode acoustic sensor for atrazine using molecularly imprinted polymer as recognition element. Anal Chim Acta 428:143–148Google Scholar
  106. 106.
    Tan Y, Yin J, Liang C et al (2001) A study of a new TSM bio-mimetic sensor using a molecularly imprinted polymer coating and its application for the determination of nicotine in human serum and urine. Bioelectrochemistry 53:141–148Google Scholar
  107. 107.
    Manbohi A, Shamaeli E, Alizadeh N (2014) Nanostructured conducting molecularly imprinted polypyrrole film as a selective sorbent for benzoate ion and its application in spectrophotometric analysis of beverage samples. Food Chem 155:186–191Google Scholar
  108. 108.
    Justino CIL, Freitas AC et al (2015) Recent developments in recognition elements for chemical sensors and biosensors. TrAC—Trends Anal Chem 68:2–17Google Scholar
  109. 109.
    Whitcombe MJ, Kirsch N, Nicholls IA (2014) Molecular imprinting science andtechnology: a survey of the literature for the years 2004–2011. J Mol Recognit 27:297–401Google Scholar
  110. 110.
    Sharma PS, D’Souza F, Kutner W (2012) Molecular imprinting for selective chemical sensing of hazardous compounds and drugs of abuse. TrAC—TrendsAnal Chem 34:59–76Google Scholar
  111. 111.
    Hirayama K, Sakai Y, Kameoka K et al (2002) Preparation of a sensor device with specific recognition sites for acetaldehyde by molecular imprinting technique. Sensors Actuators B 86:20–25Google Scholar
  112. 112.
    Ihdene Z, Mekki A et al (2014) Quartz crystal microbalance VOCs sensor based on dip coated polyaniline emeraldine salt thin films. Sensors Actuators B 203:647–654Google Scholar
  113. 113.
    Wu N, Feng L et al (2009) An optical reflected device using a molecularly imprinted polymer film sensor. Anal Chim Acta 653:103–108Google Scholar
  114. 114.
    Lépinay S, Ianoul A, Albert J (2014) Molecular imprinted polymer-coated optical fiber sensor for the identification of low molecular weight molecules. Talanta 128:401–407Google Scholar
  115. 115.
    Cennamo N, Donà A, Pallavicini P et al (2015) Sensitive detection of 2,4,6-trinitrotoluene by tridimensional monitoring of molecularly imprinted polymer with optical fiber and five-branched gold nanostars. Sens Actuators B 208:291–298Google Scholar
  116. 116.
    Debliquy M, Dony N et al (2016) Acetaldehyde chemical sensor based on molecularly imprinted polypyrrole. Procedia Eng 168:569–573Google Scholar
  117. 117.
    Tang X, Raskin JP, Lahem D (2017) A formaldehyde sensor based on molecularly-imprinted polymer on a TiO2, nanotube array. Sensors 17:675Google Scholar
  118. 118.
    Schedin F, Geim AK et al (2007) Detection of individual gas molecules absorbed on graphene. Nat Mater 6(9):652–655ADSGoogle Scholar
  119. 119.
    Chen CW, Hung SC et al (2011) Oxygen sensors made by monolayer graphene under room temperature. Appl Phys Lett 99(24):243502ADSGoogle Scholar
  120. 120.
    Fowler JD, Matthew JA, Tung VC et al (2009) Practical chemical sensors from chemically derived graphene. ACS Nano 3(2):301–306Google Scholar
  121. 121.
    Juree H, Lee S et al (2015) A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid.” ACS Appl Mater Interfaces, 150209062057005Google Scholar
  122. 122.
    Pandey PA, Wilson NR, Covington JA (2013) Pd-doped reduced graphene oxide sensing films for H2 detection. Sensors Actuators B Chem 183:478–487Google Scholar
  123. 123.
    Lu G, Ocola LE, Chen J (2009) Reduced graphene oxide for room temperature gas sensors. Nanotechnology 20:445502Google Scholar
  124. 124.
    Hu N, Yang Z. Wang Y et al (2014) Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology 25, no. 2:025502ADSGoogle Scholar
  125. 125.
    Le H, Zhang Z et al (2015) Multifunctional graphene sensors for magnetic and hydrogen detection. ACS Appl Mater Interfaces 7(18):9581–9588Google Scholar
  126. 126.
    Wang T, Da H, Zhi Y et al (2016) A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett 8(2):95–119Google Scholar
  127. 127.
    Tahe A, Soltani LH (2013) Graphene/poly(methylMethacrylate) chemiresistor sensor for formaldehyde odor sensing. J Hazard Mater 248–249:401–406Google Scholar
  128. 128.
    Schedin F, Geim AK, Morozov SV et al (2007) Detection of individual gas molecules absorbed on graphene. Nat Mater 6(9):652–655ADSGoogle Scholar
  129. 129.
    Wangyang F, Jiang L, van Geest EP et al (2017) Sensing at the surface of graphene field-effect transistors. Adv Mater 29(6):1603610Google Scholar
  130. 130.
    Sergey R, Liu G, Shur MS, Potyrailo RA, Balandin AA (2012) Selective gas sensing with a single pristine graphene transistor. Nano Lett 12(5):2294–2298ADSGoogle Scholar
  131. 131.
    Elias DC,. Nair RR, Mohiuddin TMG et al (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323(5914):610–613ADSGoogle Scholar
  132. 132.
    Bo L, Zhou L et al (2011) Photochemical chlorination of graphene. ACS Nano 5:5957–5961Google Scholar
  133. 133.
    Dimiev AM, Tour JM (2014) Mechanism of graphene oxide formation. ACS Nano 8(3):3060–3068Google Scholar
  134. 134.
    Wei F, Long P et al (2016) Two-dimensional fluorinated graphene: synthesis, structures, properties and applications. Adv Sci 3:1500413Google Scholar
  135. 135.
    Hang Z, Bekyarova E et al (2011) Aryl functionalization as a route to band gap engineering in single layer graphene devices. Nano Lett 11:4047–4051ADSGoogle Scholar
  136. 136.
    Milowska KZ, Majewski JA (2013) Stability and electronic structure of covalently functionalized graphene layers: covalently functionalized graphene layers. Phys Status Solidi B 250:1474–1477ADSGoogle Scholar
  137. 137.
    Lin C-T, Loan PTK et al (2013) Label-free electrical detection of DNA hybridization on graphene using hall effect measurements: revisiting the sensing mechanism. Adv Funct Mater 23:2301–2307Google Scholar
  138. 138.
    Ye L, Goldsmith BR, Kybert NJ et al (2010) DNA-decorated graphene chemical sensors. Appl Phys Lett 97:083107ADSGoogle Scholar
  139. 139.
    Lerner MB, Matsunaga F et al (2014) Scalable production of highly sensitive nanosensors based on graphene functionalized with a designed G protein-coupled receptor. Nano Lett 14:2709–2714ADSGoogle Scholar
  140. 140.
    Lingyan F, Wu L et al (2012) Detection of a prognostic indicator in early-stage cancer using functionalized graphene-based peptide sensors. Adv Mater 24:125–131Google Scholar
  141. 141.
    Bochen Z, Uddin MA et al (2016) Temperature dependent carrier mobility in graphene: effect of Pd nanoparticle functionalization and hydrogenation. Appl Phys Lett 108:093102ADSGoogle Scholar
  142. 142.
    Xiaochen D, Fu D et al (2009) Doping single-layer graphene with aromatic molecules. Small 5:1422–1426Google Scholar
  143. 143.
    Zhu Y, Yufeng H et al (2016) A graphene-based affinity nanosensor for detection of low-charge and low-molecular-weight molecules. Nanoscale 8:5815–5819ADSGoogle Scholar
  144. 144.
    Liu J, Liu Z, Barrow CJ et al (2015) Molecularly engineered graphene surfaces for sensing applications: a review. Anal Chim Acta 859:1–19ADSGoogle Scholar
  145. 145.
    Tang X, Mager N et al (2017) Defect-free functionalized graphene sensor for formaldehyde detection. Nanotechnology 28:055501ADSGoogle Scholar
  146. 146.
    Milowska KZ, Majewski JA (2014) Graphene-based sensors: theoretical study. J Phys Chem C 118:17395–17401Google Scholar
  147. 147.
    Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57ADSGoogle Scholar
  148. 148.
    Yaping D, Lu Y, Kybert NJ et al (2009) Intrinsic response of graphene vapor sensors. Nano Lett 9:1472–1475ADSGoogle Scholar
  149. 149.
    Ruoxi W, Zhang D et al (2006) Boron-doped carbon nanotubes serving as a novel chemical sensor for formaldehyde. J Phys Chem B 110:18267–18271Google Scholar
  150. 150.
    Reckinger N, Tang X et al (2016) Oxidation-assisted graphene heteroepitaxy on copper foil. Nanoscale 8:18751–18759Google Scholar
  151. 151.
    Mei C, Zhao YP (2009) Adsorption of formaldehyde molecule on the intrinsic and Al-doped graphene: a first principle study. Comput Mater Sci 46:1085–1090Google Scholar
  152. 152.
    Rumyantsev S, Liu G, Shur MS et al (2012) Selective gas sensing with a single pristine graphene transistor. Nano Lett 12:2294–2298ADSGoogle Scholar
  153. 153.
    Vineet D, Surwade SP et al (2010) All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew Chem Int Ed 49:2154–2157Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Marc Debliquy
    • 1
    Email author
  • Arnaud Krumpmann
    • 1
  • Driss Lahem
    • 2
  • Xiaohui Tang
    • 3
  • Jean-Pierre Raskin
    • 3
  1. 1.Material Science DepartmentUniversité de Mons (UMONS)MonsBelgium
  2. 2.Materials Science DepartmentMateria NovaMonsBelgium
  3. 3.Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM)Université catholique de Louvain (UCL)Louvain-la-NeuveBelgium

Personalised recommendations