Carbon and Nitrogen Metabolism of Sponge Microbiome

  • Guofang Feng
  • Zhiyong LiEmail author


Sponges represent an evolutionarily divergent group of species with widespread physiological and ecological traits. Spongology has grown into a discipline attracting a progressively growing population of hundreds of scientists across the world. Sponges host complex communities of microbial symbionts and thus are ideal model to test functional equivalence and evolutionary convergence that exists in complex symbiont communities across phylogenetically divergent hosts. Many studies have demonstrated the tremendous advances in our understanding of the composition and phylogenetic diversity of sponge-associated microbes. As a comparison, the in situ activity and function of these microbes has become a major research focus. Already the rewards of this new emphasis are evident, with cultivation-independent genomic and experimental approaches yielding novel insights into symbiont function. Herein, this review highlights the largest part of the available knowledge on recent developments about the sponge-meditated nutrient fluxes and their ecological implications of carbon and nitrogen. Gene, genome, transcriptome, and next-generation sequencing (NGS) analyses have provided extraordinary insights into the sponge microbial functions as well as the ecological roles. This review has covered the recent findings regarding dynamics of sponge microbiome, and several interesting research areas, that we believe are deserving of increased attention.


Sponge Microbiome Nitrogen metabolism Carbon metabolism 



We gratefully acknowledge financial supports from the Natural Science Foundation of China (NSFC) (31861143020, 41776138, 41742002, U1301131, 41176127, 41076077), the High-Tech Research and Development Program of China (2013AA092901, 2011AA090702, 2007AA09Z447, 2004AA628060, 2002AA608080), and the National Major Scientific Research Program of China (2013CB956103).


  1. 1.
    Cavalier-Smith T. Origin of animal multicellularity: precursors, causes, consequences-the choanoflagellate/sponge transition, neurogenesis and the Cambrian explosion. Phil Trans R Soc B. 2017;372:20150476.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Leys SP, Rohksar DS, Degnan BM. Sponges. Curr Biol. 2005;15:R114–5.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Bell JJ. Functional roles of marine sponges. Estuar Coast Shelf Sci. 2008;79:341–53.CrossRefGoogle Scholar
  4. 4.
    Maldonado M, Ribes M, van Duyl FC. Nutrient fluxes through sponges: biology, budgets, and ecological implications. Adv Mar Biol. 2012;62:113–82.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Southwell MW, Weisz JB, Martens CS, Lindquist N. In situ fluxes of dissolved inorganic nitrogen from the sponge community on Conch Reef, Key Largo, Florida. Limnol Oceanogr. 2008;53:986.CrossRefGoogle Scholar
  6. 6.
    Jin L, Liu F, Sun W, Zhang F, Karuppiah V, Li Z. Pezizomycotina dominates the fungal communities of South China Sea sponges Theonella swinhoei and Xestospongia testudinaria. FEMS Microbiol Ecol. 2014;90:935–45.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    He L, Liu F, Karuppiah V, Ren Y, Li Z. Comparisons of the fungal and protistan communities among different marine sponge holobionts by pyrosequencing. Microb Ecol. 2014;67:951–61.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Rodriguez-Marconi S, De la Iglesia R, Diez B, Fonseca CA, Hajdu E, Trefault N. Characterization of bacterial, archaeal and eukaryote symbionts from antarctic sponges reveals a high diversity at a three-domain level and a particular signature for this ecosystem. PLoS One. 2015;10:e0138837.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Thomas T, Moitinho-Silva L, Lurgi M, Bjork JR, Easson C, Astudillo-Garcia C, et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun. 2016;7:11870.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Polonia AR, Cleary DF, Freitas R, Coelho FJ, de Voogd NJ, Gomes NC. Comparison of archaeal and bacterial communities in two sponge species and seawater from an Indonesian coral reef environment. Mar Genomics. 2016;29:69–80.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Webster NS, Taylor MW, Behnam F, Lucker S, Rattei T, Whalan S, et al. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ Microbiol. 2010;12:2070–82.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Reveillaud J, Maignien L, Eren AM, Huber JA, Apprill A, Sogin ML, et al. Host-specificity among abundant and rare taxa in the sponge microbiome. ISME J. 2014;8:1198–209.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Lee OO, Wang Y, Yang J, Lafi FF, Al-Suwailem A, Qian PY. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME J. 2011;5:650–64.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Fiore CL, Labrie M, Jarett JK, Lesser MP. Transcriptional activity of the giant barrel sponge, Xestospongia muta Holobiont: molecular evidence for metabolic interchange. Front Microbiol. 2015;6:364.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kamke J, Taylor MW, Schmitt S. Activity profiles for marine sponge-associated bacteria obtained by 16S rRNA vs 16S rRNA gene comparisons. ISME J. 2010;4:498–508.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Webster NS, Taylor MW. Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol. 2012;14:335–46.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Schmitt S, Weisz JB, Lindquist N, Hentschel U. Vertical transmission of a phylogenetically complex microbial consortium in the viviparous sponge Ircinia felix. Appl Environ Microbiol. 2007;73:2067–78.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev. 2007;71:295–347.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Hentschel U, Piel J, Degnan SM, Taylor MW. Genomic insights into the marine sponge microbiome. Nat Rev Microbiol. 2012;10:641–54.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    de Goeij JM, Moodley L, Houtekamer M, Carballeira NM, van Duyl FC. Tracing 13C-enriched dissolved and particulate organic carbon in the bacteria-containing coral reef sponge Halisarca caerulea: evidence for DOM-feeding. Limnol Oceanogr. 2008;53:1376–86.CrossRefGoogle Scholar
  21. 21.
    de Goeij JM, van Oevelen D, Vermeij MJ, Osinga R, Middelburg JJ, de Goeij AF, et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science. 2013;342:108–10.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Vacelet J, Fiala-Medioni A, Fisher CR, Boury-Esnault N. Symbiosis between methane-oxidizing bacteria and a deep-sea carnivorous cladorhizid sponge. Mar Ecol Prog Ser. 1996;145:77–85.CrossRefGoogle Scholar
  23. 23.
    Hoffmann F, Radax R, Woebken D, Holtappels M, Lavik G, Rapp HT, et al. Complex nitrogen cycling in the sponge Geodia barretti. Environ Microbiol. 2009;11:2228–43.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Hentschel U, Usher KM, Taylor MW. Marine sponges as microbial fermenters. FEMS Microbiol Ecol. 2006;55:167–77.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Figueroa IA, Barnum TP, Somasekhar PY, Carlström CI, Engelbrektson AL, Coates JD. Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway. Proc Natl Acad Sci U S A. 2018;115:E92–E101.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Burgsdorf I, Erwin PM, Lopez-Legentil S, Cerrano C, Haber M, Frenk S, et al. Biogeography rather than association with cyanobacteria structures symbiotic microbial communities in the marine sponge Petrosia ficiformis. Front Microbiol. 2014;5:529.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Cebrian E, Uriz MJ, Garrabou J, Ballesteros E. Sponge mass mortalities in a warming Mediterranean Sea: are cyanobacteria-harboring species worse off? PLoS One. 2011;6:e20211.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Thacker RW. Impacts of shading on sponge-cyanobacteria symbioses: a comparison between host-specific and generalist associations. Integr Comp Biol. 2005;45:369–76.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Webb VL, Maas EW. Sequence analysis of 16S rRNA gene of cyanobacteria associated with the marine sponge Mycale (Carmia) hentscheli. FEMS Microbiol Lett. 2002;207:43–7.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Granados C, Camargo C, Zea S, Sanchez JA. Phylogenetic relationships among zooxanthellae (Symbiodinium) associated to excavating sponges (Cliona spp.) reveal an unexpected lineage in the Caribbean. Mol Phylogenet Evol. 2008;49:554–60.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Hill M, Allenby A, Ramsby B, Schonberg C, Hill A. Symbiodinium diversity among host clionaid sponges from Caribbean and Pacific reefs: evidence of heteroplasmy and putative host-specific symbiont lineages. Mol Phylogenet Evol. 2011;59:81–8.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Weisz JB, Massaro AJ, Ramsby BD, Hill MS. Zooxanthellar symbionts shape host sponge trophic status through translocation of carbon. Biol Bull. 2010;219:189–97.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Zea S, Lopez-Victoria M. Cliona acephala (Porifera: Demospongiae: Clionaida), a new encrusting excavating reef sponge from the Colombian Caribbean belonging to the Cliona viridis species complex. Zootaxa. 2016;4178:583–92.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Zundelevich A, Lazar B, Ilan M. Chemical versus mechanical bioerosion of coral reefs by boring sponges-lessons from Pione cf. vastifica. J Exp Biol. 2007;210:91–6.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Cheshire AC, Wilkinson CR. Modelling the photosynthetic production by sponges on Davies Reef, Great Barrier Reef. Mar Biol. 1991;109:13–8.CrossRefGoogle Scholar
  36. 36.
    Rosell D, Uriz MJ. Do associated zooxanthellae and the nature of the substratum affect survival, attachment and growth of Cliona viridis (Porifera: Hadromerida)? Mar Biol. 1992;114:503–7.CrossRefGoogle Scholar
  37. 37.
    Brümmer F, Pfannkuchen M, Baltz A, Hauser T, Thiel V. Light inside sponges. J Exp Mar Biol Ecol. 2008;367:61–4.CrossRefGoogle Scholar
  38. 38.
    Wilkinson CR. Nutrient translocation from green algal symbionts to the freshwater sponge Ephydatia fluviatilis. Hydrobiologia. 1980;75:241–50.CrossRefGoogle Scholar
  39. 39.
    Koopmans M, van Rijswijk P, Martens D, Egorova-Zachernyuk TA, Middelburg JJ, Wijffels RH. Carbon conversion and metabolic rate in two marine sponges. Mar Biol. 2011;158:9–20.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Wilkinson CR. Net primary productivity in coral reef sponges. Science. 1983;219:410–2.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Murray F, Widdicombe S, McNeill CL, Solan M. Consequences of a simulated rapid ocean acidification event for benthic ecosystem processes and functions. Mar Pollut Bull. 2013;73:435–42.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Morrow KM, Bourne DG, Humphrey C, Botte ES, Laffy P, Zaneveld J, et al. Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges. ISME J. 2015;9:894–908.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Jensen S, Fortunato SA, Hoffmann F, Hoem S, Rapp HT, Ovreas L, et al. The relative abundance and transcriptional activity of marine sponge-associated microorganisms emphasizing groups involved in sulfur cycle. Microb Ecol. 2017;73:668–76.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Feng G, Sun W, Zhang F, Karthik L, Li Z. Inhabitancy of active Nitrosopumilus-like ammonia-oxidizing archaea and Nitrospira nitrite-oxidizing bacteria in the sponge Theonella swinhoei. Sci Rep. 2016;6:24966.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Han M, Li Z, Zhang F. The ammonia oxidizing and denitrifying prokaryotes associated with sponges from different sea areas. Microb Ecol. 2013;66:427–36.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Han M, Liu F, Zhang F, Li Z, Lin H. Bacterial and archaeal symbionts in the South China Sea sponge Phakellia fusca: community structure, relative abundance, and ammonia-oxidizing populations. Mar Biotechnol. 2012;14:701–13.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Lopez-Legentil S, Erwin PM, Pawlik JR, Song B. Effects of sponge bleaching on ammonia-oxidizing Archaea: distribution and relative expression of ammonia monooxygenase genes associated with the barrel sponge Xestospongia muta. Microb Ecol. 2010;60:561–71.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Mohamed NM, Saito K, Tal Y, Hill RT. Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges. ISME J. 2010;4:38–48.PubMedCrossRefGoogle Scholar
  49. 49.
    Nishijima M, Lindsay DJ, Hata J, Nakamura A, Kasai H, Ise Y, et al. Association of thioautotrophic bacteria with deep-sea sponges. Mar Biotechnol. 2010;12:253–60.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Radax R, Hoffmann F, Rapp HT, Leininger S, Schleper C. Ammonia-oxidizing archaea as main drivers of nitrification in cold-water sponges. Environ Microbiol. 2012;14:909–23.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Radax R, Rattei T, Lanzen A, Bayer C, Rapp HT, Urich T, et al. Metatranscriptomics of the marine sponge Geodia barretti: tackling phylogeny and function of its microbial community. Environ Microbiol. 2012;14:1308–24.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Ribes M, Jimenez E, Yahel G, Lopez-Sendino P, Diez B, Massana R, et al. Functional convergence of microbes associated with temperate marine sponges. Environ Microbiol. 2012;14:1224–39.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Thomas T, Rusch D, DeMaere MZ, Yung PY, Lewis M, Halpern A, et al. Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J. 2010;4:1557–67.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    van Duyl FC, Hegeman J, Hoogstraten A, Maier C. Dissolved carbon fixation by sponge-microbe consortia of deep water coral mounds in the northeastern Atlantic Ocean. Mar Ecol Prog Ser. 2008;358:137–50.CrossRefGoogle Scholar
  55. 55.
    Burgsdorf I, Slaby BM, Handley KM, Haber M, Blom J, Marshall CW, et al. Lifestyle evolution in cyanobacterial symbionts of sponges. MBio. 2015;6:e00391–15.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Yu CH, Lu CK, Su HM, Chiang TY, Hwang CC, Liu T, et al. Draft genome of Myxosarcina sp. strain GI1, a baeocytous cyanobacterium associated with the marine sponge Terpios hoshinota. Stand Genomic Sci. 2015;10:28.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y, Sugahara J, et al. Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci U S A. 2006;103:18296–301.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci U S A. 2010;107:8818–23.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kim BK, Jung MY, Yu DS, Park SJ, Oh TK, Rhee SK, et al. Genome sequence of an ammonia-oxidizing soil archaeon, “Candidatus Nitrosoarchaeum koreensis” MY1. J Bacteriol. 2011;193:5539–40.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Tourna M, Stieglmeier M, Spang A, Konneke M, Schintlmeister A, Urich T, et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci U S A. 2011;108:8420–5.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Tian RM, Sun J, Cai L, Zhang WP, Zhou GW, Qiu JW, et al. The deep-sea glass sponge Lophophysema eversa harbors potential symbionts responsible for the nutrient conversions of carbon, nitrogen and sulfur. Environ Microbiol. 2016;18:2481–94.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Chain P, Lamerdin J, Larimer F, Regala W, Lao V, Land M, et al. Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J Bacteriol. 2003;185:2759–73.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Klotz MG, Arp DJ, Chain PS, El-Sheikh AF, Hauser LJ, Hommes NG, et al. Complete genome sequence of the marine, chemolithoautotrophic, ammonia-oxidizing bacterium Nitrosococcus oceani ATCC 19707. Appl Environ Microbiol. 2006;72:6299–315.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Siegl A, Kamke J, Hochmuth T, Piel J, Richter M, Liang C, et al. Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME J. 2011;5:61–70.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Tian RM, Wang Y, Bougouffa S, Gao ZM, Cai L, Bajic V, et al. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge. Environ Microbiol. 2014;16:3548–61.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Liu F, Li J, Feng G, Li Z. New genomic insights into “Entotheonella” symbionts in Theonella swinhoei: mixotrophy, anaerobic adaptation, resilience, and interaction. Front Microbiol. 2016;7:1333.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Li Z, Wang Y, Li J, Liu F, He L, He Y, et al. Metagenomic analysis of genes encoding nutrient cycling pathways in the microbiota of deep-sea and shallow-water sponges. Mar Biotechnol. 2016;18:659–71.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Moitinho-Silva L, Seridi L, Ryu T, Voolstra CR, Ravasi T, Hentschel U. Revealing microbial functional activities in the Red Sea sponge Stylissa carteri by metatranscriptomics. Environ Microbiol. 2014;16:3683–98.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Bayer K, Moitinho-Silva L, Brummer F, Cannistraci CV, Ravasi T, Hentschel U. GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater. FEMS Microbiol Ecol. 2014;90:832–43.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Li ZY, Wang YZ, He LM, Zheng HJ. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi indicated by metagenomics. Sci Rep. 2014;4:3895.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Trindade-Silva AE, Rua C, Silva GG, Dutilh BE, Moreira AP, Edwards RA, et al. Taxonomic and functional microbial signatures of the endemic marine sponge Arenosclera brasiliensis. PLoS One. 2012;7:e39905.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Hestetun JT, Dahle H, Jorgensen SL, Olsen BR, Rapp HT. The microbiome and occurrence of methanotrophy in carnivorous sponges. Front Microbiol. 2016;7:1781.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Jensen S, Neufeld JD, Birkeland N-K, Hovland M, Murrell JC. Insight into the microbial community structure of a Norwegian deep-water coral reef environment. Deep-Sea Res Pt I. 2008;55:1554–63.CrossRefGoogle Scholar
  74. 74.
    Thurber AR, Kröger K, Neira C, Wiklund H, Levin LA. Stable isotope signatures and methane use by New Zealand cold seep benthos. Mar Geol. 2010;272:260–9.CrossRefGoogle Scholar
  75. 75.
    Kamke J, Sczyrba A, Ivanova N, Schwientek P, Rinke C, Mavromatis K, et al. Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges. ISME J. 2013;7:2287–300.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Hunting ER, de Goeij JM, Asselman M, van Soest RW, van der Geest HG. Degradation of mangrove-derived organic matter in mangrove associated sponges. B Mar Sci. 2010;86:871–7.CrossRefGoogle Scholar
  77. 77.
    Cretoiu MS, Kielak AM, Al-Soud WA, Sørensen SJ, van Elsas JD. Mining of unexplored habitats for novel chitinases—chiA as a helper gene proxy in metagenomics. Appl Microbiol Biotechnol. 2012;94:1347–58.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Fan L, Reynolds D, Liu M, Stark M, Kjelleberg S, Webster NS, et al. Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proc Natl Acad Sci U S A. 2012;109:E1878–87.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Ward BB, Capone DG, Zehr JP. What’s new in the nitrogen cycle? Oceanography. 2007;20:101–9.CrossRefGoogle Scholar
  80. 80.
    Stein LY, Klotz MG. The nitrogen cycle. Curr Biol. 2016;26:R94–8.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Gruber N, Galloway JN. An Earth-system perspective of the global nitrogen cycle. Nature. 2008;451:293–6.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Wilkinson CR, Fay P. Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature. 1979;279:527–9.CrossRefGoogle Scholar
  83. 83.
    Shieh WY, Lin YM. Association of heterotrophic nitrogen-fixing bacteria with a marine sponge of Halichondria sp. Bull Mar Sci. 1994;54:557–64.Google Scholar
  84. 84.
    Wilkinson CR, Summons RE, Evans E. Nitrogen fixation in symbiotic marine sponges: ecological significance and difficulties in detection. Mem Qld Mus. 1999;44:667–73.Google Scholar
  85. 85.
    Mohamed NM, Colman AS, Tal Y, Hill RT. Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges. Environ Microbiol. 2008;10:2910–21.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Zhang F, Vicente J, Hill RT. Temporal changes in the diazotrophic bacterial communities associated with Caribbean sponges Ircinia stroblina and Mycale laxissima. Front Microbiol. 2014;5:561.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Weigel BL, Erwin PM. Effects of reciprocal transplantation on the microbiome and putative nitrogen cycling functions of the intertidal sponge, Hymeniacidon heliophila. Sci Rep. 2017;7:43247.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Liu M, Fan L, Zhong L, Kjelleberg S, Thomas T. Metaproteogenomic analysis of a community of sponge symbionts. ISME J. 2012;6:1515–25.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Steger D, Ettinger-Epstein P, Whalan S, Hentschel U, de Nys R, Wagner M, et al. Diversity and mode of transmission of ammonia-oxidizing archaea in marine sponges. Environ Microbiol. 2008;10:1087–94.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Schlappy ML, Schottner SI, Lavik G, Kuypers MM, de Beer D, Hoffmann F. Evidence of nitrification and denitrification in high and low microbial abundance sponges. Mar Biol. 2010;157:593–602.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Diaz MC, Ward BB. Sponge-mediated nitrification in tropical benthic communities. Mar Ecol Prog Ser. 1997;156:97–107.CrossRefGoogle Scholar
  92. 92.
    Jiménez E, Ribes M. Sponges as a source of dissolved inorganic nitrogen: nitrification mediated by temperate sponges. Limnol Oceanogr. 2007;52:948–58.CrossRefGoogle Scholar
  93. 93.
    Bayer K, Schmitt S, Hentschel U. Physiology, phylogeny and in situ evidence for bacterial and archaeal nitrifiers in the marine sponge Aplysina aerophoba. Environ Microbiol. 2008;10:2942–55.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Fiore CL, Baker DM, Lesser MP. Nitrogen biogeochemistry in the Caribbean sponge, Xestospongia muta: a source or sink of dissolved inorganic nitrogen? PLoS One. 2013;8:e72961.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, et al. Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol. 2002;68:4431–40.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Juretschko S, Timmermann G, Schmid M, Schleifer KH, Pommerening-Roser A, Koops HP, et al. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol. 1998;64:3042–51.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Spieck E, Hartwig C, McCormack I, Maixner F, Wagner M, Lipski A, et al. Selective enrichment and molecular characterization of a previously uncultured Nitrospira-like bacterium from activated sludge. Environ Microbiol. 2006;8:405–15.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Foesel BU, Gieseke A, Schwermer C, Stief P, Koch L, Cytryn E, et al. Nitrosomonas Nm143-like ammonia oxidizers and Nitrospira marina-like nitrite oxidizers dominate the nitrifier community in a marine aquaculture biofilm. FEMS Microbiol Ecol. 2008;63:192–204.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Hovanec TA, Taylor LT, Blakis A, Delong EF. Nitrospira-like bacteria associated with nitrite oxidation in freshwater aquaria. Appl Environ Microbiol. 1998;64:258–64.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Bartosch S, Hartwig C, Spieck E, Bock E. Immunological detection of Nitrospira-like bacteria in various soils. Microb Ecol. 2002;43:26–33.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Lebedeva EV, Alawi M, Fiencke C, Namsaraev B, Bock E, Spieck E. Moderately thermophilic nitrifying bacteria from a hot spring of the Baikal rift zone. FEMS Microbiol Ecol. 2005;54:297–306.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Off S, Alawi M, Spieck E. Enrichment and physiological characterization of a novel Nitrospira-like bacterium obtained from a marine sponge. Appl Environ Microbiol. 2010;76:4640–6.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Keuter S, Kruse M, Lipski A, Spieck E. Relevance of Nitrospira for nitrite oxidation in a marine recirculation aquaculture system and physiological features of a Nitrospira marina-like isolate. Environ Microbiol. 2011;13:2536–47.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Maixner F, Wagner M, Lucker S, Pelletier E, Schmitz-Esser S, Hace K, et al. Environmental genomics reveals a functional chlorite dismutase in the nitrite-oxidizing bacterium ‘Candidatus Nitrospira defluvii’. Environ Microbiol. 2008;10:3043–56.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Diaz MC, Akob D, Cary CS. Denaturing gradient gel electrophoresis of nitrifying microbes associated with tropical sponges. Boll Mus Ist Biol Univ Genova. 2004;68:279–89.Google Scholar
  106. 106.
    Polonia AR, Cleary DF, Freitas R, de Voogd NJ, Gomes NC. The putative functional ecology and distribution of archaeal communities in sponges, sediment and seawater in a coral reef environment. Mol Ecol. 2015;24:409–23.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Rua CP, Gregoracci GB, Santos EO, Soares AC, Francini-Filho RB, Thompson F. Potential metabolic strategies of widely distributed holobionts in the oceanic archipelago of St Peter and St Paul (Brazil). FEMS Microbiol Ecol. 2015;91:fiv043.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    van Kessel MA, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJ, Kartal B, et al. Complete nitrification by a single microorganism. Nature. 2015;528:555–9.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Zumft WG. Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev. 1997;61:533–616.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Shieh WY, Lin YT, Jean WD. Pseudovibrio denitrificans gen. nov., sp. nov., a marine, facultatively anaerobic, fermentative bacterium capable of denitrification. Int J Syst Evol Microbiol. 2004;54:2307–12.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Enticknap JJ, Kelly M, Peraud O, Hill RT. Characterization of a culturable alphaproteobacterial symbiont common to many marine sponges and evidence for vertical transmission via sponge larvae. Appl Environ Microbiol. 2006;72:3724–32.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Yang Z, Li Z. Spatial distribution of prokaryotic symbionts and ammoxidation, denitrifier bacteria in marine sponge Astrosclera willeyana. Sci Rep. 2012;2:528.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Zhang X, He L, Zhang F, Sun W, Li Z. The different potential of sponge bacterial symbionts in N2 release indicated by the phylogenetic diversity and abundance analyses of denitrification genes, nirK and nosZ. PLoS One. 2013;8:e65142.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    de Voogd NJ, Cleary DF, Polonia AR, Gomes NC. Bacterial community composition and predicted functional ecology of sponges, sediment and seawater from the thousand islands reef complex, West Java, Indonesia. FEMS Microbiol Ecol. 2015;91:fiv019.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Lund MB, Smith JM, Francis CA. Diversity, abundance and expression of nitrite reductase (nirK)-like genes in marine thaumarchaea. ISME J. 2012;6:1966–77.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Schirmer A, Gadkari R, Reeves CD, Ibrahim F, DeLong EF, Hutchinson CR. Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl Environ Microbiol. 2005;71:4840–9.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Thiel V, Neulinger SC, Staufenberger T, Schmaljohann R, Imhoff JF. Spatial distribution of sponge-associated bacteria in the Mediterranean sponge Tethya aurantium. FEMS Microbiol Ecol. 2007;59:47–63.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Mohamed NM, Rao V, Hamann MT, Kelly M, Hill RT. Monitoring bacterial diversity of the marine sponge Ircinia strobilina upon transfer into aquaculture. Appl Environ Microbiol. 2008;74:4133–43.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Mohamed NM, Enticknap JJ, Lohr JE, McIntosh SM, Hill RT. Changes in bacterial communities of the marine sponge Mycale laxissima on transfer into aquaculture. Appl Environ Microbiol. 2008;74:1209–22.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Montalvo NF, Hill RT. Sponge-associated bacteria are strictly maintained in two closely related but geographically distant sponge hosts. Appl Environ Microbiol. 2011;77:7207–16.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Croue J, West NJ, Escande ML, Intertaglia L, Lebaron P, Suzuki MT. A single betaproteobacterium dominates the microbial community of the crambescidine-containing sponge Crambe crambe. Sci Rep. 2013;3:2583.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Weigel BL, Erwin PM. Intraspecific variation in microbial symbiont communities of the sun sponge, Hymeniacidon heliophila, from intertidal and subtidal habitats. Appl Environ Microbiol. 2015;82:650–8.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Pimentel-Elardo S, Wehrl M, Friedrich AB, Jensen PR, Hentschel U. Isolation of planctomycetes from Aplysina sponges. Aquat Microb Eco. 2003;33:239–45.CrossRefGoogle Scholar
  124. 124.
    Izumi H, Sagulenko E, Webb RI, Fuerst JA. Isolation and diversity of planctomycetes from the sponge Niphates sp., seawater, and sediment of Moreton Bay, Australia. Antonie Van Leeuwenhoek. 2013;104:533–46.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Mohan SB, Schmid M, Jetten M, Cole J. Detection and widespread distribution of the nrfA gene encoding nitrite reduction to ammonia, a short circuit in the biological nitrogen cycle that competes with denitrification. FEMS Microbiol Ecol. 2004;49:433–43.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Herrero A, Muro-Pastor AM, Flores E. Nitrogen control in cyanobacteria. J Bacteriol. 2001;183:411–25.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Gibson AH, Jenkins BD, Wilkerson FP, Short SM, Zehr JP. Characterization of cyanobacterial glnA gene diversity and gene expression in marine environments. FEMS Microbiol Ecol. 2006;55:391–402.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Feng G, Sun W, Zhang F, Orlic S, Li Z. Functional transcripts indicate phylogenetically diverse active ammonia-scavenging microbiota in sympatric sponges. Mar Biotechnol. 2018;20:131–43.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Glibert PM, Azanza R, Burford M, Furuya K, Abal E, Al-Azri A, et al. Ocean urea fertilization for carbon credits poses high ecological risks. Mar Pollut Bull. 2008;56:1049–56.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Collier JL, Baker KM, Bell SL. Diversity of urea-degrading microorganisms in open-ocean and estuarine planktonic communities. Environ Microbiol. 2009;11:3118–31.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Su J, Jin L, Jiang Q, Sun W, Zhang F, Li Z. Phylogenetically diverse ureC genes and their expression suggest the urea utilization by bacterial symbionts in marine sponge Xestospongia testudinaria. PLoS One. 2013;8:e64848.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations