Natural Products from Corals

  • Guoqiang LiEmail author
  • Pinglin LiEmail author
  • Xuli Tang


Cnidarians (mainly corals) are one of the most important resources of marine natural products (MNPs). Corals have rich species diversity, with more than 10 orders having 7000 species been found. The orders Alcyonacea (soft corals) and Gorgonacea (sea fans) which are referred to as ahermatypes, or non-reef building corals, have contributed with promising bioactive marine compounds. Till now, there have been more than 5800 compounds obtained from corals all over the world, attributing almost 20% of the total MNPs. These secondary metabolites are mostly representative as terpenoids and steroids. More than a hundred of the coral-derived natural products have great potential for the development of new pharmaceuticals and antifoulants. In this section, the research progress on coral-derived MNPs during the past two decades was included, mainly focusing on five points: (1) coral-produced structures with brand-new skeleton, (2) coral-derived MNPs with significant bioactivities, (3) some representative approaches on total synthesis of coral-derived novel compounds, (4) a short review of the coral-derived compounds in preclinical and clinical development, and (5) Conclusion.


Coral Natural products Bioactivity 


  1. 1.
    Zhang GW, Ma XQ, Kurihara H, Zhang CX, Yao XS, Su JY, et al. New hemiketal steroid from the soft coral Cladiella sp. Org Lett. 2005;7:991–4.CrossRefGoogle Scholar
  2. 2.
    Poza JJ, Fernández R, Reyes F, Rodríguez J, Jiménez C. Isolation, biological significance, synthesis, and cytotoxic evaluation of new natural Parathiosteroids A−C and analogues from the soft coral Paragorgia sp. J Org Chem. 2008;73:7978–84.CrossRefGoogle Scholar
  3. 3.
    (a) Miyaoka H, Yamanishi M, Kajiwara Y, Yamada Y. Total synthesis of cladocorans A and B: a structural revision. J Org Chem 2003;68:3476–9. (b) Fontana A, Ciavatta ML, Cimino G. Cladocoran A and B: two novel γ-hydroxybutenolide sesterterpenes from the Mediterranean coral Cladocora cespitosa. J Org Chem 1998;63:2845–49.Google Scholar
  4. 4.
    Tomono Y, Hirota H, Fusetani N, Isogosterones AD. Antifouling 13, 17-Seco steroids from an Octocoral Dendronephthya sp. Org Lett. 1999;64:2272–5.Google Scholar
  5. 5.
    Lindel T, Jensen PR, Fenical W, Long BH, Casazza AM, Carboni J, et al. Eleutherobin, a new cytotoxin that mimics paclitaxel (Taxol) by stabilizing microtubules. J Am Chem Soc. 1997;119:8744–5.CrossRefGoogle Scholar
  6. 6.
    Liang LF, Kurtan T, Mandi A, Yao LG, Li J, Zhang W, et al. Unprecedented diterpenoids as a PTP1B inhibitor from the Hainan soft coral Sarcophyton trocheliophorum Marenzeller. Org Lett. 2012;15:274–7.CrossRefGoogle Scholar
  7. 7.
    Marrero J, Rodríguez AD, Baran P, Raptis RG, Sánchez JA, Ortega-Barria E, et al. Bielschowskysin, a gorgonian-derived biologically active diterpene with an unprecedented carbon skeleton. Org Lett. 2004;6:1661–4.CrossRefGoogle Scholar
  8. 8.
    Rodríguez AD, Shi JG. Isolation, structure elucidation, and synthesis of bisgersolanolide, a novel heptacyclic bis-diterpenoid from the Gorgonian Octocoral Pseudopterogorgia bipinnata. Org Lett. 1999;1:337–40.CrossRefGoogle Scholar
  9. 9.
    Taglialatela-Scafati O, Deo-Jangra U, Campbell M, Roberge M, Andersen RJ. Diterpenoids from cultured Erythropodium caribaeorum. Org Lett. 2002;4:4085–8.CrossRefGoogle Scholar
  10. 10.
    Gupta P, Sharma U, Schulz TC, Sherrer ES, McLean AB, Robins AJ, et al. Bioactive diterpenoid containing a reversible “spring-loaded”(E, Z)-dieneone michael acceptor. Org Lett. 2011;13:3920–3.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Lin KH, Tseng YJ, Chen BW, Hwang TL, Chen HY, Dai CF, et al. Tortuosenes A and B, new diterpenoid metabolites from the Formosan soft coral Sarcophyton tortuosum. Org Lett. 2014;16:1314–7.CrossRefGoogle Scholar
  12. 12.
    Rodríguez II, Rodríguez AD, Zhao H. Aberrarone: a gorgonian-derived diterpene from Pseudopterogorgia elisabethae. J Org Chem. 2009;74:7581–4.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Chill L, Rudi A, Benayahu Y, Schleyer M, Kashman Y. Kitungolides A, B, and C, new diterpenes from a soft coral of a new genus. Org Lett. 2004;6:755–8.CrossRefGoogle Scholar
  14. 14.
    Ospina CA, Rodríguez AD. Corallolides A and B: bioactive diterpenes featuring a novel carbon skeleton. Org Lett. 2009;11:3786–9.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Tseng YJ, Ahmed AF, Dai CF, Chiang MY, Sheu JH. Sinulochmodins AC, three novel terpenoids from the soft coral Sinularia lochmodes. Org Lett. 2005;7:3813–6.CrossRefGoogle Scholar
  16. 16.
    Marrero J, Rodríguez AD, Baran P, Raptis RG. Isolation and structure of providencin: a highly oxygenated diterpene possessing a unique bicyclo [12.2. 0] hexadecane ring system from the sea plume Pseudopterogorgia kallos. Org Lett. 2003;5:2551–4.CrossRefGoogle Scholar
  17. 17.
    Wei X, Rodríguez II, Rodríguez AD, Barnes CL. Caribenols A and B, sea whip derived norditerpenes with novel tricarbocyclic skeletons. J Org Chem. 2007;72:7386–9.CrossRefGoogle Scholar
  18. 18.
    Ishigami ST, Goto Y, Inoue N, Kawazu SI, Matsumoto Y, Imahara Y, et al. Cristaxenicin A, an antiprotozoal xenicane diterpenoid from the deep sea gorgonian Acanthoprimnoa cristata. J Org Chem. 2012;77:10962–6.CrossRefGoogle Scholar
  19. 19.
    El-Gamal AA, Wang SK, Duh CY. Xenibellols A and B, new diterpenoids from the Formosan soft coral Xenia umbellata. Org Lett. 2005;7:2023–5.CrossRefGoogle Scholar
  20. 20.
    Martín MJ, Fernandez R, Francesch A, Amade P, de Matos-Pita SS, Reyes F, et al. Plumisclerin A, a diterpene with a new skeleton from the soft coral Plumigorgia terminosclera. Org Lett. 2010;12:912–4.CrossRefGoogle Scholar
  21. 21.
    Marrero J, Rodríguez AD, Barnes CL. Intricarene, an unprecedented trispiropentacyclic diterpene from the Caribbean Sea plume Pseudopterogorgia kallos. Org Lett. 2005;7:1877–80.CrossRefGoogle Scholar
  22. 22.
    Davies HM, Dai X, Long MS. Combined CH activation/cope rearrangement as a strategic reaction in organic synthesis: total synthesis of (−)-colombiasin A and (−)-elisapterosin B. J Am Chem Soc. 2006;128:2485–90.CrossRefGoogle Scholar
  23. 23.
    Rodríguez AD, Ramírez C, Rodríguez II, Barnes CL. Novel terpenoids from the west Indian Sea Whip Pseudopterogorgia elisabethae (Bayer). Elisapterosins A and B: rearranged diterpenes possessing an unprecedented cagelike framework1. J Org Chem. 2000;65:1390–8.CrossRefGoogle Scholar
  24. 24.
    Tseng YJ, Wen ZH, Dai CF, Chiang MY, Sheu JH. Nanolobatolide, a new C18 metabolite from the Formosan soft coral Sinularia nanolobata. Org Lett. 2009;11:5030–2.CrossRefGoogle Scholar
  25. 25.
    Rodríguez AD, Ramírez C, Rodríguez II, González E. Novel antimycobacterial benzoxazole alkaloids, from the west Indian Sea whip Pseudopterogorgia elisabethae. Org Lett. 1999;1:527–30.CrossRefGoogle Scholar
  26. 26.
    Iwashima M, Terada I, Okamoto K, Iguchi K. Tricycloclavulone and clavubicyclone, novel prostanoid-related marine oxylipins, isolated from the Okinawan soft coral Clavularia viridis. J Org Chem. 2002;67:2977–81.CrossRefGoogle Scholar
  27. 27.
    Cen-Pacheco F, Norte M, Fernández JJ, Daranas AH. Zoaramine, a zoanthamine-like alkaloid with a new skeleton. Org Lett. 2014;16:2880–3.CrossRefGoogle Scholar
  28. 28.
    von Salm JL, Wilson NG, Vesely BA, Kyle DE, Cuce J, Baker BJ. Shagenes A and B, new tricyclic sesquiterpenes produced by an undescribed Antarctic octocoral. Org Lett. 2014;16:2630–3.CrossRefGoogle Scholar
  29. 29.
    Rodriguez Brasco MF, Seldes AM, Palermo JA. Paesslerins A and B: novel tricyclic sesquiterpenoids from the soft coral Alcyonium paessleri. Org Lett. 2001;3:1415–7.CrossRefGoogle Scholar
  30. 30.
    Cheng SY, Huang KJ, Wang SK, Wen ZH, Hsu CH, Dai CF, et al. New terpenoids from the soft corals Sinularia capillosa and Nephthea chabroli. Org Lett. 2009;11:4830–3.CrossRefGoogle Scholar
  31. 31.
    Torihata M, Nakahata T, Kuwahara S. Enantioselective total synthesis of isishippuric acid B via intramolecular Michael reaction. Org Lett. 2007;9:2557–9.CrossRefGoogle Scholar
  32. 32.
    Wei X, Nieves K, Rodríguez AD. Bioactive cubitane diterpenoids from a Colombian gorgonian species of the genus Eunicea. Pure Appl Chem. 2012;84:1847–55.CrossRefGoogle Scholar
  33. 33.
    Correa H, Aristizabal F, Duque C, Kerr R. Cytotoxic and antimicrobial activity of pseudopterosins and seco-pseudopterosins isolated from the octocoral Pseudopterogorgia elisabethae of San Andres and Providencia islands (Southwest Caribbean Sea). Mar Drugs. 2011;9:334–44.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Sun P, Meng LY, Tang H, Liu BS, Li L, Yi Y, et al. Sinularosides A and B, bioactive 9, 11-secosteroidal glycosides from the South China Sea soft coral Sinularia humilis Ofwegen. J Nat Prod. 2012;75:1656–9.CrossRefGoogle Scholar
  35. 35.
    Badria FA, Guirguis AN, Perovic S, Steffen R, Müller WE, Schröder HC. Sarcophytolide: a new neuroprotective compound from the soft coral Sarcophyton glaucum. Toxicology. 1998;131:133–43.CrossRefGoogle Scholar
  36. 36.
    Zheng CJ, Shao CL, Chen M, Niu ZG, Zhao DL, Wang CY. Merosesquiterpenoids and ten-membered macrolides from a soft coral-derived Lophiostoma sp. Fungus. Chem Biodivers. 2015;12:1407–14.CrossRefGoogle Scholar
  37. 37.
    Yan P, Lv Y, van Ofwegen L, Proksch P, Lin W. Lobophytones A − G, nw isobiscembranoids from the soft coral Lobophytum pauciflorum. Org Lett. 2010;12:2484–7.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gomaa MN, Soliman K, Ayesh A, Abd El-Wahed A, Hamza Z, Mansour HM, et al. Antibacterial effect of the red sea soft coral Sarcophyton trocheliophorum. Nat Prod Res. 2016;30:729–34.CrossRefGoogle Scholar
  39. 39.
    Zhao HY, Shao CL, Li ZY, Han L, Cao F, Wang CY. Bioactive pregnane steroids from a South China Sea gorgonian Carijoa sp. Molecules. 2013;18:3458–66.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Díaz-Marrero AR, Porras G, Aragón Z, de la Rosa JM, Dorta E, Cueto M, et al. Carijodienone from the octocoral Carijoa multiflora. a spiropregnane-based steroid. J Nat Prod. 2011;74:292–5.Google Scholar
  41. 41.
    Sun XP, Cao F, Shao CL, Wang M, Zhang XL, Wang CY. Antibacterial Δ1-3-Ketosteroids from the South China Sea gorgonian coral Subergorgia rubra. Chem Biodivers. 2015;12:1068–74.CrossRefGoogle Scholar
  42. 42.
    Bishara A, Rudi A, Goldberg I, Benayahu Y, Kashman Y. Novaxenicins A–D and xeniolides I–K, seven new diterpenes from the soft coral Xenia novaebrittanniae. Tetrahedron. 2006;62:12092–7.CrossRefGoogle Scholar
  43. 43.
    Tello E, Castellanos L, Arévalo-Ferro C, Duque C. Disruption in quorum-sensing systems and bacterial biofilm inhibition by cembranoid diterpenes isolated from the octocoral Eunicea knighti. J Nat Prod. 2012;75:1637–42.CrossRefGoogle Scholar
  44. 44.
    Li C, La MP, Sun P, Kurtan T, Mandi A, Tang H, et al. Bioactive (3Z, 5E)-11, 20-epoxybriara-3, 5-dien-7, 18-olide diterpenoids from the South China Sea gorgonian Dichotella gemmacea. Mar Drugs. 2011;9:1403–18.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Look SA, Fenical W, Jacobs RS, Clardy J. The pseudopterosins: anti-inflammatory and analgesic natural products from the sea whip Pseudopterogorgia elisabethae. Proc Natl Acad Sci USA. 1986;83:6238–40.CrossRefGoogle Scholar
  46. 46.
    Chao CH, Wu YC, Wen ZH, Sheu JH. Steroidal carboxylic acids from soft coral Paraminabea acronocephala. Mar Drugs. 2013;11:136–45.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Yan P, Deng Z, van Ofwegen L, Proksch P, Lin W. Lobophytones U–Z1, biscembranoids from the Chinese soft coral Lobophytum pauciflorum. Chem Biodivers. 2011;8:1724–34.CrossRefGoogle Scholar
  48. 48.
    (a) Cheng SY, Wen ZH, Chiou SF, Hsu CH, Wang SK, Dai CF, et al. Durumolides A–E, anti-inflammatory and antibacterial cembranolides from the soft coral Lobophytum durum. Tetrahedron. 2008;64:9698–704. (b) Cheng SY, Wen ZH, Wang SK, Chiou SF, Hsu CH, Dai CF, et al. Anti-inflammatory cembranolides from the soft coral Lobophytum durum. Bioorg Med Chem 2009;17:3763–9.Google Scholar
  49. 49.
    Huang SY, Chen NF, Chen WF, Hung HC, Lee HP, Lin YY, et al. Sinularin from indigenous soft coral attenuates nociceptive responses and spinal neuroinflammation in carrageenan-induced inflammatory rat model. Mar Drugs. 2012;10:1899–919.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Reina E, Puentes C, Rojas J, García J, Ramos FA, Castellanos L, et al. Fuscoside E: a strong anti-inflammatory diterpene from Caribbean octocoral Eunicea fusca. Bioorg Med Chem Lett. 2011;21:5888–91.CrossRefGoogle Scholar
  51. 51.
    Chang YC, Kuo LM, Hwang TL, Yeh J, Wen ZH, Fang LS, et al. Pinnisterols A–C, new 9, 11-secosterols from a Gorgonian Pinnigorgia sp. Mar Drugs. 2016;14:12.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Su YD, Wen ZH, Wu YC, Fang LS, Chen YH, Chang YC, et al. Briarenolides M–T, new briarane diterpenoids from a Formosan octocoral Briareum sp. Tetrahedron. 2016;72:944–51.CrossRefGoogle Scholar
  53. 53.
    Su YD, Wu TY, Wen ZH, Su CC, Chen YH, Chang YC, et al. Briarenolides U–Y, new anti-inflammatory briarane diterpenoids from an Octocoral Briareum sp.(Briareidae). Mar Drugs. 2015;13:7138–49.PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Lin WJ, Wu TY, Su TR, Wen ZH, Chen JJ, Fang LS, et al. Terpenoids from the octocoral Sinularia gaweli. Int J Mol Sci. 2015;16:19508–17.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Huang CY, Sung PJ, Uvarani C, Su JH, Lu MC, Hwang TL, et al. Glaucumolides A and B, biscembranoids with new structural type from a cultured soft coral Sarcophyton glaucum. Sci Rep. 2015;5:15624.PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Chao CH, Huang TZ, Wu CY, Chen BW, Huang CY, Hwang TL, et al. Steroidal and α-tocopherylhydroquinone glycosides from two soft corals Cladiella hirsuta and Sinularia nanolobata. RSC Adv. 2015;5:74256–62.CrossRefGoogle Scholar
  57. 57.
    Tsai CR, Huang CY, Chen BW, Tsai YY, Shih SP, Hwang TL, et al. New bioactive steroids from the soft coral Klyxum flaccidum. RSC Adv. 2015;5:12546–54.CrossRefGoogle Scholar
  58. 58.
    Lee YN, Tai CJ, Hwang TL, Sheu JH. Krempfielins N–P, new anti-inflammatory eunicellins from a Taiwanese soft coral Cladiella krempfi. Mar Drugs. 2014;12:1148–56.PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Thao NP, Luyen BTT, Ngan NTT, Song SB, Cuong NX, Nam NH, et al. New anti-inflammatory cembranoid diterpenoids from the Vietnamese soft coral Lobophytum crassum. Bioorg Med Chem Lett. 2014;24:228–32.CrossRefGoogle Scholar
  60. 60.
    Thao NP, Luyen BTT, Sun YN, Song SB, Van Thanh N, Cuong NX, et al. NF-κB inhibitory activity of polyoxygenated steroids from the Vietnamese soft coral Sarcophyton pauciplicatum. Bioorg Med Chem Lett. 2014;24:2834–8.CrossRefGoogle Scholar
  61. 61.
    Tseng YJ, Shen KP, Lin HL, Huang CY, Dai CF, Sheu JH. Lochmolins A–G, new sesquiterpenoids from the soft coral Sinularia lochmodes. Mar Drugs. 2012;10:1572–81.PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    (a) Lin WY, Lu Y, Su JH, Wen ZH, Dai CF, Kuo YH, et al. Bioactive cembranoids from the Dongsha atoll soft coral Sarcophyton crassocaule. Mar Drugs. 2011;9:994–1006. (b) Lin WY, Su JH, Lu Y, Wen ZH, Dai CF, Kuo YH, et al. Cytotoxic and anti-inflammatory cembranoids from the Dongsha atoll soft coral Sarcophyton crassocaule. Bioorg Med Chem. 2010;18:1936–41. (c) Lin WY, Lu Y, Chen BW, Huang CY, Su JH, Wen ZH, et al. Sarcocrassocolides M–O, bioactive cembranoids from the Dongsha Atoll soft coral Sarcophyton crassocaule. Mar Drugs. 2012;10:617–26.Google Scholar
  63. 63.
    Chung HM, Hong PH, Su JH, Hwang TL, Lu MC, Fang LS, et al. Bioactive compounds from a gorgonian coral Echinomuricea sp.(Plexauridae). Mar Drugs. 2012;10:1169–79.PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Marchbank DH, Berrue F, Kerr RG. Eunicidiol, an anti-inflammatory dilophol diterpene from Eunicea fusca. J Nat Prod. 2012;75:1289–93.CrossRefGoogle Scholar
  65. 65.
    Chung HM, Su JH, Hwang TL, Li JJ, Chen JJ, Chen YH, et al. Rumphellclovanes C–E, new clovane-type sesquiterpenoids from the gorgonian coral Rumphella antipathies. Tetrahedron. 2013;69:2740–4.CrossRefGoogle Scholar
  66. 66.
    Lin CY, Lu MC, Su JH, Chu CL, Shiuan D, Weng CF, et al. Immunomodulatory effect of marine cembrane-type diterpenoids on dendritic cells. Mar Drugs. 2013;11:1336–50.PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Chen BW, Chao CH, Su JH, Tsai CW, Wang WH, Wen ZH, et al. Klysimplexins I–T, eunicellin-based diterpenoids from the cultured soft coral Klyxum simplex. Org Biomol Chem. 2011;9:834–44.CrossRefGoogle Scholar
  68. 68.
    (a) Cinel B, Roberge M, Behrisch H, van Ofwegen L, Castro CB, Andersen RJ. Antimitotic diterpenes from Erythropodium caribaeorum test pharmacophore models for microtubule stabilization. Org Lett 2000;2:257–60. (b) Roberge M, Cinel B, Anderson HJ, Lim L, Jiang X, Xu L, et al. Cell-based screen for antimitotic agents and identification of analogues of rhizoxin, eleutherobin, and paclitaxel in natural extracts. Cancer Res. 2000;60:5052–8.Google Scholar
  69. 69.
    Hong JY, Boo HJ, Kang JI, Kim MK, Yoo ES, Hyun JW, et al. (1S, 2S, 3E, 7E, 11E)-3, 7, 11, 15-Cembratetraen-17, 2-olide, a cembrenolide diterpene from soft coral Lobophytum sp., inhibits growth and induces apoptosis in human colon cancer cells through reactive oxygen species generation. Biol Pharm Bull. 2012;35:1054–63.CrossRefGoogle Scholar
  70. 70.
    Ortega MJ, Zubia E, Rodriguez S, Carballo JL, Salva J. Muricenones A and B: new degraded pregnanes from a gorgonian of the genus Muricea. Eur J Org Chem. 2002;19:3250–3.CrossRefGoogle Scholar
  71. 71.
    Kao CY, Su JH, Lu MC, Hwang TL, Wang WH, Chen JJ, et al. Lobocrassins A–E: new cembrane-type diterpenoids from the soft coral Lobophytum crassum. Mar Drugs. 2011;9:1319–31.PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Coval SJ, Patton RW, Petrin JM, James L, Rothofsky ML, Lin SL, et al. A cembranolide diterpene farnesyl protein transferase inhibitor from the marine soft coral Lobophytum cristagalli. Bioorg Med Chem Lett. 1996;6:909–12.CrossRefGoogle Scholar
  73. 73.
    Xi Z, Bie W, Chen W, Liu D, Ofwegen LV, Proksch P, et al. Sarcophyolides B–E, new cembranoids from the soft coral Sarcophyton elegans. Mar Drugs. 2013;11:3186–96.PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    El-Gamal AA, Wang SK, Dai CF, Chen IG, Duh CY. Prenylbicyclogermacrane diterpenoids from the Formosan soft coral Nephthea pacifica. J Nat Prod. 2005;68:74–7.CrossRefGoogle Scholar
  75. 75.
    Duh CY, Wang SK, Tseng HK, Sheu JH, Chiang MY. Novel cytotoxic cembranoids from the soft coral Sinularia flexibilis. J Nat Prod. 1998;61:844–7.CrossRefGoogle Scholar
  76. 76.
    Shen YC, Lin YC, Ko CL, Wang LT. New Briaranes from the Taiwanese Gorgonian Junceella juncea. J Nat Prod. 2003;66:302–5.CrossRefGoogle Scholar
  77. 77.
    Chen WF, Yin CT, Cheng CH, Lu MC, Fang LS, Wang WH, et al. Norcembranoidal diterpenes from the cultured-type octocoral Sinularia numerosa. Int J Mol Sci. 2015;16:3298–306.PubMedCentralCrossRefPubMedGoogle Scholar
  78. 78.
    Shen YC, Lin YC, Chiang MY. Juncenolide A, a new briarane from the Taiwanese gorgonian Junceella juncea. J Nat Prod. 2002;65:54–6.CrossRefGoogle Scholar
  79. 79.
    Li HJ, Xie YL, Xie ZL, Chen Y, Lam CK, Lan WJ. Chondrosterins A–E, triquinane-type sesquiterpenoids from soft coral-associated fungus Chondrostereum sp. Mar Drugs. 2012;10:627–38.PubMedCentralCrossRefPubMedGoogle Scholar
  80. 80.
    Wu YJ, Neoh CA, Tsao CY, Su JH, Li HH. Sinulariolide suppresses human hepatocellular carcinoma cell migration and invasion by inhibiting matrix metalloproteinase-2/-9 through MAPKs and PI3K/Akt signaling pathways. Int J Mol Sci. 2015;16:16469–82.PubMedCentralCrossRefPubMedGoogle Scholar
  81. 81.
    Lin JJ, Su JH, Tsai CC, Chen YJ, Liao MH, Wu YJ. 11-epi-Sinulariolide acetate reduces cell migration and invasion of human hepatocellular carcinoma by reducing the activation of ERK1/2, p38MAPK and FAK/PI3K/AKT/mTOR signaling pathways. Mar Drugs. 2014;12:4783–98.PubMedCentralCrossRefPubMedGoogle Scholar
  82. 82.
    Duh CY, Lo IW, Wang SK, Dai CF. New cytotoxic steroids from the soft coral Clavularia viridis. Steroids. 2007;72:573–9.CrossRefGoogle Scholar
  83. 83.
    Lei LF, Chen MF, Wang T, He XX, Liu BX, Deng Y, et al. Novel cytotoxic nine-membered macrocyclic polysulfur cembranoid lactones from the soft coral Sinularia sp. Tetrahedron. 2014;70:6851–8.CrossRefGoogle Scholar
  84. 84.
    Iwamaru A, Iwado E, Kondo S, Newman RA, Vera B, Rodríguez AD, et al. Eupalmerin acetate, a novel anticancer agent from Caribbean gorgonian octocorals, induces apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase pathway. Mol Cancer Ther. 2007;6:184–92.CrossRefGoogle Scholar
  85. 85.
    Zierler S, Yao G, Zhang Z, Kuo WC, Pörzgen P, Penner R, et al. Waixenicin A inhibits cell proliferation through magnesium-dependent block of transient receptor potential melastatin 7 (TRPM7) channels. J Biol Chem. 2011;286:39328–35.PubMedCentralCrossRefPubMedGoogle Scholar
  86. 86.
    Shen S, Zhu H, Chen D, Liu D, van Ofwegen L, Proksch P, et al. Pavidolides A–E, new cembranoids from the soft coral Sinularia pavida. Tetrahedron Lett. 2012;53:5759–62.CrossRefGoogle Scholar
  87. 87.
    Lo KL, Khalil AT, Kuo YH, Shen YC. Sinuladiterpenes A–F, new cembrane diterpenes from Sinularia flexibilis. Chem Biodivers. 2009;6:2227–35.CrossRefGoogle Scholar
  88. 88.
    Wang GH, Ahmed AF, Kuo YH, Sheu JH. Two new subergane-based sesquiterpenes from a Taiwanese Gorgonian coral Subergorgia suberosa. J Nat Prod. 2002;65:1033–6.CrossRefGoogle Scholar
  89. 89.
    Iwashima M, Matsumoto Y, Takenaka Y, Iguchi K, Yamori T. New marine diterpenoids from the Okinawan soft coral Clavularia koellikeri. J Nat Prod. 2002;65:1441–6.CrossRefGoogle Scholar
  90. 90.
    Zhang XW, Tang XL, Yuan HR, Feng DQ, Su P, Li PL, et al. Two new eunicellin diterpenoids from the South China Sea gorgonian Muricella sibogae and their bioactivities. Nat Prod Res. 2015;29:2018–23.CrossRefGoogle Scholar
  91. 91.
    (a) Wang CY, Chen AN, Shao CL, Li L, Xu Y, Qian PY. Chemical constituents of soft coral Sarcophyton infundibuliforme from the South China Sea. Biochem Syst Eco. 2011;39:853–85. (b) Gao CH, He BJ, Chen YN, Ke K, Lin L, Long B, et al. Two new diterpenoids from the Beibu Gulf Gorgonian Anthogorgia caerulea. Zeitschrift für Naturforschung B. 2014;69:116–20.Google Scholar
  92. 92.
    Qi SH, Zhang S, Qian PY, Xu HH. Antifeedant and antifouling briaranes from the South China Sea gorgonian Junceella juncea. Chem Nat Compd. 2009;45:49–54.CrossRefGoogle Scholar
  93. 93.
    Lai D, Li Y, Xu M, Deng Z, Van Ofwegen L, Qian P, et al. Sinulariols A–S, 19-oxygenated cembranoids from the Chinese soft coral Sinularia rigida. Tetrahedron. 2011;67:6018–29.CrossRefGoogle Scholar
  94. 94.
    Zhang J, Liang Y, Wang KL, Liao XJ, Deng Z, Xu SH. Antifouling steroids from the South China Sea gorgonian coral Subergorgia suberosa. Steroids. 2014;79:1–6.CrossRefGoogle Scholar
  95. 95.
    Gribble GW. Biological activity of recently discovered halogenated marine natural products. Mar Drugs. 2015;13:4044–136.PubMedCentralCrossRefPubMedGoogle Scholar
  96. 96.
    Chen D, Chen W, Liu D, van Ofwegen L, Proksch P, Lin W. Asteriscane-type sesquiterpenoids from the soft coral Sinularia capillosa. J Nat Prod. 2013;76:1753–63.CrossRefGoogle Scholar
  97. 97.
    Chen D, Yu S, van Ofwegen L, Proksch P, Lin W. Anthogorgienes A–O, new guaiazulene-derived terpenoids from a Chinese gorgonian Anthogorgia species, and their antifouling and antibiotic activities. J Agric Food Chem. 2011;60:112–23.CrossRefGoogle Scholar
  98. 98.
    Mol VL, Raveendran TV, Parameswaran PS, Kunnath RJ, Rajamohanan PR. α-Hydroxy polyanthellin A-A novel antifouling diterpenoid from the Indian soft coral Cladiella krempfi (Hickson). Can J Chem. 2010;89(6):57–60.Google Scholar
  99. 99.
    Qi SH, Zhang S, Yang LH, Qian PY. Antifouling and antibacterial compounds from the gorgonians Subergorgia suberosa and Scripearia gracilis. Nat Prod Res. 2008;22:154–66.CrossRefGoogle Scholar
  100. 100.
    Zhang J, Li LC, Wang KL, Liao XJ, Deng Z, Xu SH. Pentacyclic hemiacetal sterol with antifouling and cytotoxic activities from the soft coral Nephthea sp. Bioorg Med Chem Lett. 2013;23:1079–82.CrossRefGoogle Scholar
  101. 101.
    Handayani D, Edrada RA, Proksch P, Wray V, Witte L, van Ofwegen L, et al. New oxygenated sesquiterpenes from the Indonesian soft coral Nephthea chabrolii. J Nat Prod. 1997;60:716–8.CrossRefGoogle Scholar
  102. 102.
    Řezanka T, Hanuš LO, Dembitsky VM, Sigler K. Identification of the eight-membered heterocycles Hicksoanes A–C from the Gorgonian Subergorgia hicksoni. Eur J Org Chem. 2008;7:1265–70.CrossRefGoogle Scholar
  103. 103.
    Iken KB, Baker BJ. Ainigmaptilones, sesquiterpenes from the Antarctic gorgonian coral Ainigmaptilon antarcticus. J Nat Prod. 2003;66:888–90.CrossRefGoogle Scholar
  104. 104.
    Epifanio RDA, Maia LF, Pawlik JR, Fenical W. Antipredatory secosterols from the octocoral Pseudopterogorgia americana. Mar Ecol-Prog Ser. 2007;329:307–10.CrossRefGoogle Scholar
  105. 105.
    Maia LF, Epifanio RDA, Eve T, Fenical W. New fish feeding deterrents, including a novel sesquiterpenoid heterogorgiolide, from the Brazilian gorgonian Heterogorgia uatumani (Octocorallia, Gorgonacea). J Nat Prod. 1999;62:1322–4.CrossRefGoogle Scholar
  106. 106.
    Jayasuriya H, Herath KB, Ondeyka JG, Guan Z, Borris RP, Tiwari S, et al. Diterpenoid, steroid, and triterpenoid agonists of liver X receptors from diversified terrestrial plants and marine sources. J Nat Prod. 2005;68:1247–52.CrossRefGoogle Scholar
  107. 107.
    Sun ZH, Cai YH, Fan CQ, Tang GH, Luo HB, Yin S. Six new tetraprenylated alkaloids from the South China Sea Gorgonian Echinogorgia pseudossapo. Mar Drugs. 2014;12:672–81.PubMedCentralCrossRefPubMedGoogle Scholar
  108. 108.
    Hassan HM, Khanfar MA, Elnagar AY, Mohammed R, Shaala LA, Youssef DT, et al. Pachycladins A − E, prostate cancer invasion and migration inhibitory eunicellin-based diterpenoids from the Red Sea soft coral Cladiella pachyclados. J Nat Prod. 2010;73:848–53.CrossRefGoogle Scholar
  109. 109.
    Meyer M, Delberghe F, Liron F, Guillaume M, Valentin A, Guyot M. An antiplasmodial new (bis) indole alkaloid from the hard coral Tubastraea sp. Nat Prod Res. 2009;23:178–82.CrossRefGoogle Scholar
  110. 110.
    Wei X, Rodríguez AD, Baran P, Raptis RG. Dolabellane-type diterpenoids with antiprotozoan activity from a Southwestern Caribbean Gorgonian octocoral of the genus Eunicea. J Nat Prod. 2010;73:925–34.PubMedCentralCrossRefPubMedGoogle Scholar
  111. 111.
    Rodríguez II, Shi YP, García OJ, Rodríguez AD, Mayer AM, Sánchez JA, et al. New pseudopterosin and seco-pseudopterosin diterpene glycosides from two Colombian isolates of Pseudopterogorgia elisabethae and their diverse biological activities. J Nat Prod. 2004;67:1672–80.CrossRefGoogle Scholar
  112. 112.
    Aoki S, Okano M, Matsui K, Itoh T, Satari R, Akiyama SI, et al. Brianthein A, a novel briarane-type diterpene reversing multidrug resistance in human carcinoma cell line, from the gorgonian Briareum excavatum. Tetrahedron. 2001;57:8951–7.CrossRefGoogle Scholar
  113. 113.
    Rashid MA, Gustafson KR, Boyd MR. HIV-inhibitory cembrane derivatives from a Philippines collection of the soft coral Lobophytum species 1. J Nat Prod. 2000;63:531–3.CrossRefGoogle Scholar
  114. 114.
    Hooper GJ, Davies-Coleman MT. Sesquiterpene hydroquinones from the South African soft coral Alcyonium fauri. Tetrahedron Lett. 1995;36:3265–8.CrossRefGoogle Scholar
  115. 115.
    Newton CG, Sherburn MS. Total synthesis of the pseudopterosin aglycones. Nat Prod Rep. 2015;32:865–76.CrossRefGoogle Scholar
  116. 116.
    Williams DR, Shah AA. Total synthesis of (+)-ileabethoxazole via an iron-mediated Pauson–Khand [2+ 2+ 1] carbocyclization. J Am Chem Soc. 2014;136:8829–36.CrossRefGoogle Scholar
  117. 117.
    (a) Crimmins MT, Brown BH, Plake HR. An intramolecular Diels-Alder approach to the eunicellins: enantioselective total syntheses of ophirin B and astrogorgin. J Am Chem Soc 2006;128:1371–8. (b) Molander GA, St. Jean DJ, Haas J Toward a general route to the eunicellin diterpenes: the asymmetric total synthesis of deacetoxyalcyonin acetate J Am Chem Soc 2004;126:1642–3. (c) Kim H, Lee H, Kim J, Kim S, Kim D. A general strategy for synthesis of both (6 Z)-and (6 E)-Cladiellin diterpenes: total syntheses of (−)-cladiella-6, 11-dien-3-ol,(+)-polyanthellin A,(−)-cladiell-11-ene-3, 6, 7-triol, and (−)-deacetoxyalcyonin acetate. J Am Chem Soc 2006;128:15851–5. (d) MacMillan DW, Overman LE, Pennington LD. A general strategy for the synthesis of cladiellin diterpenes: enantioselective total syntheses of 6-acetoxycladiell-7 (16), 11-dien-3-ol (deacetoxyalcyonin acetate), cladiell-11-ene-3, 6, 7-triol, sclerophytin A, and the initially purported structure of sclerophytin A. J Am Chem Soc 2001;123:9033–44.Google Scholar
  118. 118.
    Mushti CS, Kim JH, Corey EJ. Total synthesis of antheliolide A. J Am Chem Soc. 2006;128:14050–2.CrossRefGoogle Scholar
  119. 119.
    Ito H, Hasegawa M, Takenaka Y, Kobayashi T, Iguchi K. Enantioselective total synthesis of (+)-tricycloclavulone. J Am Chem Soc. 2004;126:4520–1.CrossRefGoogle Scholar
  120. 120.
    Nicolaou KC, Xu JY, Kim S, Pfefferkorn J, Ohshima T, Vourloumis D, et al. Total synthesis of sarcodictyins A and B. J Am Chem Soc. 1998;120:8661–73.CrossRefGoogle Scholar
  121. 121.
    Nicolaou KC, Winssinger N, Vourloumis D, Ohshima T, Kim S, Pfefferkorn J, et al. Solid and solution phase synthesis and biological evaluation of combinatorial sarcodictyin libraries. J Am Chem Soc. 1998;120:10814–26.CrossRefGoogle Scholar
  122. 122.
    Wang B, Ramirez AP, Slade JJ, Morken JP. Enantioselective synthesis of (−)-sclerophytin A by a stereoconvergent epoxide hydrolysis. J Am Chem Soc. 2010;132:16380–2.PubMedCentralCrossRefPubMedGoogle Scholar
  123. 123.
    Davoren JE, Martin SF. Enantioselective synthesis and structure revision of solandelactone E. J Am Chem Soc. 2007;129:510–1.PubMedCentralCrossRefPubMedGoogle Scholar
  124. 124.
    Brown MK, Hoveyda AH. Enantioselective total synthesis of clavirolide C. applications of Cu-catalyzed asymmetric conjugate additions and Ru-catalyzed ring-closing metathesis. J Am Chem Soc. 2008;130:12904–6.PubMedCentralCrossRefPubMedGoogle Scholar
  125. 125.
    Kündig EP, Cannas R, Laxmisha M, Ronggang L, Tchertchian S. Chromium-mediated asymmetric synthesis of both enantiomers of acetoxytubipofuran. J Am Chem Soc. 2003;125:5642–3.CrossRefGoogle Scholar
  126. 126.
    Crimmins MT, Ellis JM. Establishing the absolute configuration of the asbestinins: enantioselective total synthesis of 11-acetoxy-4-deoxyasbestinin D. J Am Chem Soc. 2005;127:17200–1.PubMedCentralCrossRefPubMedGoogle Scholar
  127. 127.
    Ichige T, Okano Y, Kanoh N, Nakata M. Total synthesis of methyl sarcophytoate. J Am Chem Soc. 2007;129:9862–3.CrossRefGoogle Scholar
  128. 128.
    Nicolaou KC, Ohshima T, Hosokawa S, Van Delft FL, Vourloumis D, Xu JY, et al. Total synthesis of eleutherobin and eleuthosides A and B. J Am Chem Soc. 1998;120:8674–80.CrossRefGoogle Scholar
  129. 129.
    Heckrodt TJ, Mulzer J. Total synthesis of elisabethin A: intramolecular Diels-Alder reaction under biomimetic conditions. J Am Chem Soc. 2003;125:4680–1.CrossRefGoogle Scholar
  130. 130.
    Mayer AM, Glaser KB, Cuevas C, Jacobs RS, Kem W, Little RD, et al. The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci. 2010;31:255–65.CrossRefGoogle Scholar
  131. 131.
    Mayer AM, Lehmann VK. Marine pharmacology in 1998: Marine compounds with antibacterial, anticoagulant, antifungal, antiinflammatory, anthelmintic, antiplatelet, antiprotozoal, and antiviral activities; with actions on the cardiovascular, endocrine, immune, and nervous systems; and other miscellaneous mechanisms of action. Pharmacologist. 2000;43:62–9.Google Scholar
  132. 132.
    Nicolaou KC, Kim S, Pfefferkorn J, Xu J, Ohshima T, Hosokawa S, et al. Synthesis and biological activity of sarcodictyins. Angew Chem Int E. 1998;37:1418–21.CrossRefGoogle Scholar
  133. 133.
    Cinel B, Roberge M, Behrisch H, van Ofwegen L, Castro CB, Andersen RJ. Antimitotic diterpenes from erythropodium caribaeorum test pharmacophore models for microtubule stabilization. Org Lett. 2000;2:257–60.CrossRefGoogle Scholar
  134. 134.
    Britton R, de Silva ED, Bigg CM, McHardy LM, Roberge M, Andersen RJ. Synthetic transformations of eleutherobin reveal new features of its microtubule-stabilizing pharmacophore. J Am Chem Soc. 2001;123:8632–3.CrossRefGoogle Scholar
  135. 135.
    Baker BJ, Scheuer PJ. The punaglandins: 10-chloroprostanoids from the octocoral Telesto riisei. J Nat Prod. 1994;57:1346–53.CrossRefGoogle Scholar
  136. 136.
    Verbitski SM, Mullally JE, Fitzpatrick FA, Ireland CM. Punaglandins, chlorinated prostaglandins, function as potent Michael receptors to inhibit ubiquitin isopeptidase activity. J Med Chem. 2004;47:2062–70.CrossRefGoogle Scholar
  137. 137.
    Huang YC, Guh JH, Shen YC, Teng CM. Investigation of anticancer mechanism of clavulone II, a coral cyclopentenone prostaglandin analog, in human acute promyelocytic leukemia. J Biomed Sci. 2005;12:335–45.CrossRefGoogle Scholar
  138. 138.
    Shen YC, Cheng YB, Lin YC, Guh JH, Teng CM, Ko CL. New prostanoids with cytotoxic activity from Taiwanese octocoral Clavularia viridis. J Nat Prod. 2004;67:542–6.CrossRefGoogle Scholar
  139. 139.
    Chiang PC, Chien CL, Pan SL, Chen WP, Teng CM, Shen YC, et al. Induction of endoplasmic reticulum stress and apoptosis by a marine prostanoid in human hepatocellular carcinoma. J Hepatol. 2005;43:679–86.CrossRefGoogle Scholar
  140. 140.
    Chiang PC, Kung FL, Huang DM, Li TK, Fan JR, Pan SL, et al. Induction of Fas clustering and apoptosis by coral prostanoid in human hormone-resistant prostate cancer cells. Eur J Pharmacol. 2006;542:22–30.CrossRefGoogle Scholar
  141. 141.
    Posadas I, Terencio MC, De Rosa S, Payá M. Cavernolide: a new inhibitor of human sPLA2 sharing unusual chemical features. Life Sci. 2000;67:3007–14.CrossRefGoogle Scholar
  142. 142.
    Sata NU, Sugano M, Matsunaga S, Fusetani N. Sinulamide: an H, K-ATPase inhibitor from a soft coral Sinularia sp. Tetrahedron Lett. 1999;40:719–22.CrossRefGoogle Scholar
  143. 143.
    Aceret TL, Coll JC, Uchio Y, Sammarco PW. Antimicrobial activity of the diterpenes flexibilide and sinulariolide derived from Sinularia flexibilis Quoy and Gaimard 1833 (Coelenterata: Alcyonacea, Octocorallia). Comp Biochem Physiol C: Pharmacol Toxicol Endocrinol. 1998;120:121–6.Google Scholar
  144. 144.
    Edrada RA, Proksch P, Wray V, Witte L, van Ofwegen L. Four new bioactive lobane diterpenes of the soft coral Lobophytum pauciflorum from Mindoro, Philippines. J Nat Prod. 1998;61:358–61.CrossRefGoogle Scholar
  145. 145.
    Chao CH, Wen ZH, Wu YC, Yeh HC, Sheu JH. Cytotoxic and anti-inflammatory cembranoids from the soft coral Lobophytum crassum. J Nat Prod. 2008;71:1819–24.CrossRefGoogle Scholar
  146. 146.
    Cheng SY, Wen ZH, Chiou SF, Hsu CH, Wang SK, Dai CF, et al. Durumolides A–E, anti-inflammatory and antibacterial cembranolides from the soft coral Lobophytum durum. Tetrahedron. 2008;64:9698–704.CrossRefGoogle Scholar
  147. 147.
    Shen YC, Chen YH, Hwang TL, Guh JH, Khalil AT. Four new briarane diterpenoids from the gorgonian coral Junceella fragilis. Helv Chim Acta. 2007;90:1391–8.CrossRefGoogle Scholar
  148. 148.
    Mayer AM, Jacobson PB, Fenical W, Jacobs RS, Glaser KB. Pharmacological characterization of the pseudopterosins: novel anti-inflammatory natural products isolated from the Caribbean soft coral, Pseudopterogorgia elisabethae. Life Sci. 1998;62:PL401–7.CrossRefGoogle Scholar
  149. 149.
    BALA SRD, Venkata RD, Bheemasankara RC, Dhananjaya N, Kuttan R, Babu TD. Isolation and structural determination of new sphingolipids and pharmacological activity of africanene and other metabolites from Sinularia leptoclados. Chem Pharm Bull. 1999;47:1214–20.CrossRefGoogle Scholar
  150. 150.
    Ichida K, Ikeda M, Goto K, Ito K. Characterization of a palytoxin-induced non-selective cation channel in mouse megakaryocytes. Jpn J Pharmacol. 1999;81:200–8.CrossRefGoogle Scholar
  151. 151.
    Yabe T, Yamada H, Shimomura M, Miyaoka H, Yamada Y. Induction of choline acetyltransferase activity in cholinergic neurons by stolonidiol: structure-activity relationship. J Nat Prod. 2000;63:433–5.CrossRefGoogle Scholar
  152. 152.
    (a) Sawant S, Youssef D, Mayer A, Sylvester P, Wali V, Arant M, et al. Anticancer and anti-inflammatory sulfur-containing semisynthetic derivatives of sarcophine. Chem Pharm Bull 2006;54:1119–123. (b) Mayer AMS, Oh S, Presto E, Glaser KB, Jacobson PB. LPS-primed rat brain microglia: a convenient in vitro model to search for anti-inflammatory marine natural products. Shock. 1997;7(Suppl 2):49.Google Scholar
  153. 153.
    Temraz TA, Houssen WE, Jaspars M, Woolley DR, Wease KN, Davies SN, et al. A pyridinium derivative from Red Sea soft corals inhibited voltage-activated potassium conductances and increased excitability of rat cultured sensory neurones. BMC Pharmacol. 2006;6:10.PubMedCentralCrossRefPubMedGoogle Scholar
  154. 154.
    Bordeleau ME, Mori A, Oberer M, Lindqvist L, Chard LS, Higa T, et al. Functional characterization of IRESes by an inhibitor of the RNA helicase eIF4A. Nat Chem Biol. 2006;2:213–20.CrossRefGoogle Scholar
  155. 155.
    Gross H, König GM. Terpenoids from marine organisms: unique structures and their pharmacological potential. Phytochem Rev. 2006;5:115–41.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and PharmacyOcean University of ChinaQingdaoPeople’s Republic of China

Personalised recommendations