Natural Products from Sponges

  • Bing-Nan Han
  • Li-Li Hong
  • Bin-Bin Gu
  • Yang-Ting Sun
  • Jie Wang
  • Jin-Tang Liu
  • Hou-Wen Lin


The sponge is one of the oldest multicellular invertebrates in the world. Marine sponges represent one of the extant metazoans of 700–800 million years. They are classified in four major classes: Calcarea, Demospongiae, Hexactinellida, and Homoscleromorpha. Among them, three genera, namely, Haliclona, Petrosia, and Discodemia have been identified to be the richest source of biologically active compounds. So far, 15,000 species have been described, and among them, more than 6000 species are found in marine and freshwater systems throughout tropical, temperate, and polar regions. More than 5000 different compounds have been isolated and structurally characterized to date, contributing to about 30% of all marine natural products. The chemical diversity of sponge products is high with compounds classified as alkaloids, terpenoids, peptides, polyketides, steroids, and macrolides, which integrate a wide range of biological activities, including antibacterial, anticancer, antifungal, anti-HIV, anti-inflammatory, and antimalarial. There is an open debate whether all natural products isolated from sponges are produced by sponges or are in fact derived from microorganisms that are inhaled though filter-feeding or that live within the sponges. Apart from their origin and chemoecological functions, sponge-derived metabolites are also of considerable interest in drug development. Therefore, development of recombinant microorganisms engineered for efficient production of sponge-derived products is a promising strategy that deserves further attention in future investigations in order to address the limitations regarding sustainable supply of marine drugs.


Sponge Sponge holobiont Natural products Alkaloids Peptides Polyketides Macrolides Terpenoids Steroids Bioactivity 


  1. 1.
    Rodriguez J, Schatzman RC, Lou L, Crews P. An alkaloid protein kinase C inbibitor, xestocyclamine A, from the marine sponge Xestospongia sp. J Am Chem Soc. 1993;115:10436–7.CrossRefGoogle Scholar
  2. 2.
    Peters BM, Kurz L, Schatzman RC, Mccarley D, Lou L, et al. Novel marine sponge alkaloids:V. an alkaloid protein kinase C inhibitor, xestocyclamine A, from the marine sponge Xestospongia sp. ChemInform. 1994;25:10436–7.Google Scholar
  3. 3.
    Vassas A, Bourdy G, Paillard JJ, Lavayre J, Païs M, Quirion JC, et al. Naturally occurring somatostatin and vasoactive intestinal peptide inhibitors. Isolation of alkaloids from two marine sponges. Planta Med. 1996;62:28–30.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Tsukamoto S, Kato H, Hiroshi-Hirota A, Fusetani N. Mauritiamine, a new antifouling oroidin dimer from the marine sponge Agelas mauritiana. J Nat Prod. 1996;59:501–3.CrossRefGoogle Scholar
  5. 5.
    Pettit GR, Orr B, Herald DL, Doubek DL, Tackett L, Schmidt JM, et al. Isolation and X-ray crystal structure of racemic Xestospongin D from the Singapore marine sponge Niphates sp. Bioorg Med Chem Lett. 1996;6:1313–8.CrossRefGoogle Scholar
  6. 6.
    Eder C, Schupp P, Proksch P, Wray V, Steube K, Müller CE, et al. Soest: bioactive pyridoacridine alkaloids from the micronesian sponge Oceanapia sp. J Nat Prod. 1998;61:301–5.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Kashman Y, Koren-Goldshlager G, Gravalos MDG, Schleyer M. Halitulin, a new cytotoxic alkaloid from the marine sponge Haliclona tulearensis. Tetrahedron Lett. 1999;40:997–1000.CrossRefGoogle Scholar
  8. 8.
    Mariegeneviève-Dijoux WRG, Hallock YF, Ii JHC, Boyd MR. A new discorhabdin from two sponge genera. J Nat Prod. 1999;62:636–7.CrossRefGoogle Scholar
  9. 9.
    Marino SD, Iorizzi M, Zollo F, Roussakis C, Debitus C. Plakinamines C and D and three other new steroidal alkaloids from the sponge Corticium sp. J Nat Prod. 1999;30:636–7.Google Scholar
  10. 10.
    Casapullo A, Bifulco G, Bruno I, Riccio R. New bisindole alkaloids of the topsentin and hamacanthin classes from the Mediterranean marine sponge Rhaphisia lacazei. J Nat Prod. 2000;63:447–51.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Cutignano A, Bifulco G, Bruno I, Casapullo A, Gomez-Paloma L, Riccio R, et al. Dragmacidin F: a new antiviral bromoindole alkaloid from the Mediterranean sponge Halicortex sp. Cheminform Abstr. 2000;31:41.Google Scholar
  12. 12.
    Casapullo A, Cutignano A, Bruno I, Bifulco G, Debitus C, Gomezpaloma L, et al. Makaluvamine P, a new cytotoxic pyrroloiminoquinone from Zyzzya cf. fuliginosa. J Nat Prod. 2001;64:1354–6.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Tasdemir D, Mallon RG, Michael L, Feldberg S, Kim K, Collins D, et al. Ireland: Aldisine alkaloids from the Philippine sponge Stylissa massa are potent inhibitors of mitogen-activated protein kinase kinase-1 (MEK-1). J Med Chem. 2002;45:529–32.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Torres YR, Berlinck RG, Nascimento GG, Fortier SC, Pessoa C, de Moraes MO, et al. Antibacterial activity against resistant bacteria and cytotoxicity of four alkaloid toxins isolated from the marine sponge Arenosclera brasiliensis. Farmacologia Marinha. 2002;40:885–91.Google Scholar
  15. 15.
    Gross H, Kehraus S, König GM, Woerheide G, Wright AD. New and biologically active imidazole alkaloids from two sponges of the genus Leucetta. J Nat Prod. 2002;65:1190–3.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Hamann MT. Manadomanzamines A and B: a novel alkaloid ring system with potent activity against mycobacteria and HIV-1. J Am Chem Soc. 2003;125:13382–6.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Bickmeyer U, Drechsler C, Kock M, Assmann M. Brominated pyrrole alkaloids from marine Agelas sponges reduce depolarization-induced cellular calcium elevation. Toxicon. 2004;44:45–51.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Ichiba T, Corgiat JM, Scheuer PJ, Kelly-Borges M. 8-Hydroxymanzamine A, a β-carboline alkaloid from a sponge Pachypellina sp. J Nat Prod. 1994;57:168–70.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Yousaf M, Hammond NL, Peng J, Wahyuono S, McIntosh KA, Charman WN, et al. New manzamine alkaloids from an Indo-Pacific sponge. Pharmacokinetics, oral availability, and the significant activity of several manzamines against HIV-I, AIDS opportunistic infections, and inflammatory diseases. J Med Chem. 2004;47:3512–7.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Rao KV, Kasanah N, Wahyuono S, Tekwani BL, Schinazi RF, Hamann MT, et al. Three new manzamine alkaloids from a common Indonesian sponge and their activity against infectious and tropical parasitic diseases. J Nat Prod. 2004;67:1314–8.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Rao KV, Donia MS, Peng J, Garcia-Palomero E, Alonso D, Martinez A, et al. Manzamine B and E and ircinal A related alkaloids from an Indonesian Acanthostrongylophora sponge and their activity against infectious, tropical parasitic, and Alzheimer’s diseases. J Nat Prod. 2006;69:1034–40.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Zhang B, Higuchi R, Miyamoto T, Soest RWV. Neuritogenic activity-guided isolation of a free base form manzamine A from a marine sponge, Acanthostrongylophora aff. ingens. Chem Pharm Bull. 2008;56:866–9.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Yamada M, Takahashi Y, Kubota T, Fromont J, Ishiyama A, Otoguro K, et al. 3,4-dihydro-6-hydroxy-10,11-epoxymanzamine A, and 3,4-dihydromanzamine J N-oxide, new manzamine alkaloids from sponge Amphimedon sp. Tetrahedron. 2009;65:2313–7.CrossRefGoogle Scholar
  24. 24.
    Antunes EM, Beukes DR, Kelly M, Samaai T, Barrows LR, Marshall KM, et al. Cytotoxic pyrroloiminoquinones from four new species of south African latrunculid sponges. J Nat Prod. 2004;67:1268–76.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Grkovic T, Ding Y, Li XC, Webb VL, Ferreira D, Copp BR, et al. Enantiomeric discorhabdin alkaloids and establishment of their absolute configurations using theoretical calculations of electronic circular dichroism spectra. J Org Chem. 2008;73:9133–6.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Davis RA, Buchanan MS, Duffy S, Avery VM, Charman SA, Charman WN, et al. Antimalarial activity of pyrroloiminoquinones from the Australian marine sponge Zyzzya sp. J Med Chem. 2012;55:5851–8.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Cao S, Foster C, Lazo JS, Kingston DG. Sesterterpenoids and an alkaloid from a Thorectandra sp. as inhibitors of the phosphatase Cdc25B. Bioorg Med Chem. 2005;13:5094–8.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Bao B, Sun Q, Yao X, Hong J, Lee CO, Sim CJ, et al. Cytotoxic bisindole alkaloids from a marine sponge Spongosorites sp. J Nat Prod. 2005;68:711–5.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Mar W, Kim S, Kim JY, Lee TH, Kim JG, Shin D, et al. Antimicrobial activity and cytotoxicity of bis (indole) alkaloids from the sponge Spongosorites sp. Biol Pharm Bull. 2006;29:570–3.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Aoki S, Watanabe Y, Sanagawa M, Setiawan A, Kotoku N, Kobayashi M, et al. Cortistatins A, B, C, and D, anti-angiogenic steroidal alkaloids, from the marine sponge Corticium simplex. J Am Chem Soc. 2006;128:3148–9.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Sato S, Kuramoto M, Ono N. Ircinamine B, bioactive alkaloid from marine sponge Dactylia sp. Tetrahedron Lett. 2006;47:7871–3.CrossRefGoogle Scholar
  32. 32.
    Buchanan MS, Carroll AR, Addepalli R, Avery VM, Hooper JN, Quinn RJ, et al. Psammaplysenes C and D, cytotoxic alkaloids from Psammoclemma sp. J Nat Prod. 2007;70:1827–9.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Oliveira JH, Nascimento AM, Kossuga MH, Cavalcanti BC, Pessoa CO, Moraes MO, et al. Cytotoxic alkylpiperidine alkaloids from the Brazilian marine sponge Pachychalina alcaloidifera. J Nat Prod. 2007;70:538–43.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Wei X, Nieves K, Rodriguez AD. Neopetrosiamine A, biologically active bis-piperidine alkaloid from the Caribbean Sea sponge Neopetrosia proxima. Bioorg Med Chem Lett. 2010;20:5905–8.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Mani L, Petek S, Valentin A, Chevalley S, Folcher E, Aalbersberg W, et al. The in vivo anti-plasmodial activity of haliclonacyclamine A, an alkaloid from the marine sponge Haliclona sp. Nat Prod Res. 2011;25:1923–30.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Hua HM, Peng J, Dunbar DC, Schinazi RF, Castro Andrews AG, Cuevas C, et al. Batzelladine alkaloids from the caribbean sponge Monanchora unguifera and the significant activities against HIV-1 and AIDS opportunistic infectious pathogens. Tetrahedron. 2007;63:11179–88.CrossRefGoogle Scholar
  37. 37.
    Laville R, Thomas OP, Berrué F, Marquez D, Vacelet J, Amade P, et al. Bioactive guanidine alkaloids from two Caribbean marine sponges. J Nat Prod. 2009;72:1589–94.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Santos MF, Harper PM, Williams DE, Mesquita JT, Pinto EG, Costa-Silva TA, et al. Anti-parasitic guanidine and pyrimidine alkaloids from the marine sponge Monanchora arbuscula. J Nat Prod. 2015;78:1101–12.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Bickmeyer U, Grube A, Klings KW, Köck M. Disturbance of voltage-induced cellular calcium entry by marine dimeric and tetrameric pyrrole–imidazole alkaloids. Toxicon. 2007;50:490–7.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Xu NJ, Sun X, Yan XJ. A new cyclostellettamine from sponge Amphimedon compressa. Chin Chem Lett. 2007;18:947–50.CrossRefGoogle Scholar
  41. 41.
    Laville R, Genta-Jouve G, Urda C, Fernández R, Thomas OP, Reyes F, et al. Njaoaminiums A, B, and C: cyclic 3-alkylpyridinium salts from the marine sponge Reniera sp. Molecules. 2009;14:4716–24.CrossRefGoogle Scholar
  42. 42.
    Ankudey FJ, Kiprof P, Stromquist ER, Chang LC. New bioactive bromotyrosine-derived alkaloid from a marine sponge Aplysinella sp. Planta Med. 2008;74:555–9.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Capon RJ, Peng C, Dooms C. Trachycladindoles A-G: cytotoxic heterocycles from an Australian marine sponge, Trachycladus laevispirulifer. Org Biomol Chem. 2008;6:2765–71.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Araki A, Kubota T, Aoyama K, Mikami Y, Fromont J, Kobayashi JI, et al. Nagelamides Q and R, novel dimeric bromopyrrole alkaloids from sponges Agelas sp. Org Lett. 2009;11:1785–8.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Kubota T, Araki A, Yasuda T, Tsuda M, Fromont J, Aoyama K, et al. Benzosceptrin C, a new dimeric bromopyrrole alkaloid from sponge Agelas sp. Tetrahedron Lett. 2009;50:7268–70.CrossRefGoogle Scholar
  46. 46.
    Barnes EC, Said NABM, Williams ED, Hooper JNA, Davis RA. Ecionines A and B, two new cytotoxic pyridoacridine alkaloids from the Australian marine sponge, Ecionemia geodides. Tetrahedron. 2010;66:283–7.CrossRefGoogle Scholar
  47. 47.
    Carroll AR, Kaiser SM, Davis RA, Moni RW, Hooper JN, Quinn RJ, et al. A bastadin with potent and selective δ-opioid receptor binding affinity from the Australian sponge Ianthella flabelliformis. J Nat Prod. 2010;73:1173–6.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Fan G, Li Z, Shen S, Zeng Y, Yang Y, Xu M. Baculiferins A-O, O-sulfated pyrrole alkaloids with anti-HIV-1 activity, from the Chinese marine sponge Iotrochota baculifera. Bioorg Med Chem. 2010;18:5466–74.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Guzii AG, Makarieva TN, Denisenko VA, Dmitrenok PS, Kuzmich AS, Dyshlovoy SA, et al. Monanchocidin: A new apoptosis-inducing polycyclic guanidine alkaloid from the marine sponge Monanchora pulchra. Org Lett. 2010;12:4292–5.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Kon Y, Kubota T, Shibazaki A, Gonoi T, Kobayashi J. Ceratinadins A-C, new bromotyrosine alkaloids from an Okinawan marine sponge Pseudoceratina sp. Bioorg Med Chem Lett. 2010;20:4569–72.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Yang X, Davis RA, Buchanan MS, Duffy S, Avery VM, Camp D, et al. Antimalarial bromotyrosine derivatives from the Australian marine sponge Hyattella sp. J Nat Prod. 2010;73:985–7.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Xu M, Andrews KT, Birrell GW, Tran TL, Camp D, Davis RA, et al. Psammaplysin H, a new antimalarial bromotyrosine alkaloid from a marine sponge of the genus Pseudoceratina. Bioorg Med Chem Lett. 2011;21:846–8.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Ferreira EG, Wilke DV, Jimenez PC, Oliveira JR, Pessoa ODL, Silveira ER, et al. Guanidine alkaloids from Monanchora arbuscula: chemistry and antitumor potential. Chem Biodivers. 2011;8:1433–45.CrossRefGoogle Scholar
  54. 54.
    Makarieva TN, Tabakmaher KM, Guzii AG, Denisenko VA, Dmitrenok PS, Shubina LK, et al. Monanchocidins B–E: polycyclic guanidine alkaloids with potent antileukemic activities from the sponge Monanchora pulchra. J Nat Prod. 2011;74:1952–8.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Makarieva TN, Tabakmaher KM, Guzii AG, Denisenko VA, Dmitrenok PS, Kuzmich AS, et al. Monanchomycalins A and B, unusual guanidine alkaloids from the sponge Monanchora pulchra. Tetrahedron Lett. 2012;53:4228–31.CrossRefGoogle Scholar
  56. 56.
    Yin S, Davis RA, Shelper T, Sykes ML, Avery VM, Elofsson M, et al. Quinn: Pseudoceramines A-D, new antibacterial bromotyrosine alkaloids from the marine sponge Pseudoceratina sp. Org Biomol Chem. 2011;9:6755–60.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Fouad MA, Debbab A, Wray V, Müller WEG, Proksch P. New bioactive alkaloids from the marine sponge Stylissa sp. Tetrahedron. 2012;68:10176–9.CrossRefGoogle Scholar
  58. 58.
    Hwang BS, Jeong EJ, Sim CJ, Rho JR. Densanins A and B, new macrocyclic pyrrole alkaloids isolated from the marine sponge Haliclona densaspicula. Org Lett. 2012;14:6154–7.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Ilias M, Ibrahim MA, Khan SI, Jacob MR, Tekwani BL, Walker LA, et al. Pentacyclic ingamine alkaloids, a new antiplasmodial pharmacophore from the marine sponge Petrosid Ng5 Sp5. Planta Med. 2012;78:1690–7.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Shen S, Liu D, Wei C, Proksch P, Lin W. Purpuroines A-J, halogenated alkaloids from the sponge Iotrochota purpurea with antibiotic activity and regulation of tyrosine kinases. Bioorg Med Chem. 2012;20:6924–8.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Takahashi Y, Tanaka N, Kubota T, Ishiyama H, Shibazaki A, Gonoi T, et al. Heteroaromatic alkaloids, nakijinamines, from a sponge Suberites sp. Tetrahedron. 2012;68:8545–50.CrossRefGoogle Scholar
  62. 62.
    Yang F, Hamann MT, Zou Y, Zhang MY, Gong XB, Xiao JR, et al. Antimicrobial metabolites from the Paracel Islands sponge Agelas mauritiana. J Nat Prod. 2012;75:774–8.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Davis RA, Duffy S, Fletcher S, Avery VM, Quinn RJ. Thiaplakortones A-D: antimalarial thiazine alkaloids from the Australian marine sponge Plakortis lita. J Org Chem. 2013;78:9608–13.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Kimura M, Wakimoto T, Abe I. Allos-hemicalyculin A, a photochemically converted calyculin from the marine sponge Discodermia calyx. Tetrahedron Lett. 2013;54:114–6.CrossRefGoogle Scholar
  65. 65.
    Kubota T, Kura KI, Fromont J, Kobayashi JI. Pyrinodemins G–I, new bis-3-alkylpyridine alkaloids from a marine sponge Amphimedon sp. Tetrahedron. 2013;69:96–100.CrossRefGoogle Scholar
  66. 66.
    Tanaka N, Kusama T, Takahashi-Nakaguchi A, Gonoi T, Fromont J, Kobayashi JI. Nagelamides X–Z, dimeric bromopyrrole alkaloids from a marine sponge Agelas sp. Org Lett. 2013;15:3262–5.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Tanaka N, Kusama T, Takahashi-Nakaguchi A, Gonoi T, Fromont J, Kobayashi JI, et al. Nagelamides U–W, bromopyrrole alkaloids from a marine sponge Agelas sp. Tetrahedron Lett. 2013;54:3794–6.CrossRefGoogle Scholar
  68. 68.
    Yamaguchi M, Miyazaki M, Kodrasov MP, Rotinsulu H, Losung F, Mangindaan RE, et al. Spongiacidin C, a pyrrole alkaloid from the marine sponge Stylissa massa, functions as a USP7 inhibitor. Bioorg Med Chem Lett. 2013;23:3884–6.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Yang F, Ji RH, Li J, Gan JH, Lin HW. N-containing metabolites from the marine sponge Agelas clathrodes. Nat Prod Commun. 2013;8:1713–4.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Arai M, Han C, Yamano Y, Setiawan A, Kobayashi M. Aaptamines, marine spongean alkaloids, as anti-dormant mycobacterial substances. J Nat Med. 2014;68:372–6.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Gan JH, Hu WZ, Yu HB, Yang F, Cao MX, Shi HJ, et al. Three new aaptamine derivatives from the South China Sea sponge Aaptos aaptos. J Asian Nat Prod Res. 2015;17:1231–8.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Gros E, Martin MT, Sorres J, Moriou C, Vacelet J, Frederich M, et al. Netamines O–S, five new tricyclic guanidine alkaloids from the Madagascar sponge Biemna laboutei and their antimalarial activities. Chem Biodivers. 2015;12:1725–33.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Hanif N, Yamada K, Kitamura M, Kawazoe Y, Voogd NJ, Uemura D, et al. New indole alkaloids from the sponge Plakortis sp. Chem Nat Compd. 2015;51:1130–3.CrossRefGoogle Scholar
  74. 74.
    Huang RY, Chen WT, Kurtán T, Mándi A, Ding J, Li J, et al. Bioactive isoquinolinequinone alkaloids from the South China Sea nudibranch Jorunna funebris and its sponge-prey Xestospongia sp. Future Med Chem. 2015;8:17–27.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Jamison MT, Molinski TF. Antipodal crambescin A2 homologues from the marine sponge Pseudaxinella reticulata. Antifungal structure-activity relationships. J Nat Prod. 2015;78:557–61.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Shaala LA, Youssef DTA, Badr JM, Sulaiman M, Khedr A, Sayed KA, et al. Bioactive alkaloids from the Red Sea marine Verongid sponge Pseudoceratina arabica. Tetrahedron. 2015;71:7837–41.CrossRefGoogle Scholar
  77. 77.
    Abdjul DB, Yamazaki H, Kanno S, Takahashi O, Kirikoshi R, Ukai K, et al. Haliclonadiamine derivatives and 6-epi-Monanchorin from the marine sponge Halichondria panicea collected at Iriomote Island. J Nat Prod. 2016;79:1149–54.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Matsunaga S, Fujiki H, Sakata D, Fusetani N. Calyculins E, F, G, and H, additional inhibitors of protein phosphatases 1 and 2a, from the marine sponge discodermia calyx. Tetrahedron. 1991;47:2999–3006.CrossRefGoogle Scholar
  79. 79.
    Coleman JE, Silva ED, Kong F, Andersen RJ, Allen TM. Cytotoxic peptides from the marine sponge Cymbastela sp. Tetrahedron. 1995;51:10653–62.CrossRefGoogle Scholar
  80. 80.
    Li HY, Matsunaga S, Fusetani N. Halicylindramides D and E, antifungal peptides from the marine sponge Halichondria cylindrata. J Nat Prod. 1996;59:163–6.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Fusetani N, Warabi K, Nogata Y, Nakao Y, Matsunaga S, Van Soest RR, et al. Koshikamide A 1, a new cytotoxic linear peptide isolated from a marine sponge, Theonella sp. Tetrahedron Lett. 1999;40:4687–90.CrossRefGoogle Scholar
  82. 82.
    Nakao Y, Masuda A, Matsunaga S, Fusetani N. Pseudotheonamides, serine protease inhibitors from the marine sponge Theonella swinhoei. J Am Chem Soc. 1999;121:2425–31.CrossRefGoogle Scholar
  83. 83.
    Nakao Y, Fujita M, Warabi K, Matsunaga S, Fusetani N. Miraziridine A, a novel cysteine protease inhibitor from the marine sponge Theonella aff. mirabilis 1. J Am Chem Soc. 2000;122:10462–3.CrossRefGoogle Scholar
  84. 84.
    Carroll AR, Pierens GK, Fechner G, Almeida Leone P, Ngo A, Simpson M, et al. Dysinosin A: a novel inhibitor of factor VIIa and thrombin from a new genus and species of Australian sponge of the family Dysideidae. J Am Chem Soc. 2002;124:13340–1.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Carroll AR, Buchanan MS, Edser A, Hyde E, Simpson M, Quinn RJ, et al. Dysinosins BD, inhibitors of factor VIIa and thrombin from the Australian sponge Lamellodysidea chlorea. J Nat Prod. 2004;67:1291–4.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Aoki S, Cao L, Matsui K, Rachmat R, Akiyama SI, Kobayashi M. Kendarimide A, a novel peptide reversing P-glycoprotein-mediated multidrug resistance in tumor cells, from a marine sponge of Haliclona sp. Tetrahedron. 2004;60:7053–9.CrossRefGoogle Scholar
  87. 87.
    Hamada T, Matsunaga S, Yano G, Fusetani N. Polytheonamides A and B, highly cytotoxic, linear polypeptides with unprecedented structural features, from the marine sponge, Theonella swinhoei. J Am Chem Soc. 2005;127:110–8.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Hamada T, Sugawara T, Matsunaga S, Fusetani N. Polytheonamides, unprecedented highly cytotoxic polypeptides from the marine sponge Theonella swinhoei 2. Structure elucidation. Tetrahedron Lett. 1994;35:609–12.CrossRefGoogle Scholar
  89. 89.
    Iwamoto M, Shimizu H, Muramatsu I, Oiki S. A cytotoxic peptide from a marine sponge exhibits ion channel activity through vectorial-insertion into the membrane. FEBS Lett. 2010;584:3995–9.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Hamada T, Sugawara T, Matsunaga S, Fusetani N. Polytheonamides, unprecedented highly cytotoxic polypeptides, from the marine sponge theonella swinhoei: 1. Isolation and component amino acids. Tetrahedron Lett. 1994;35:719–20.CrossRefGoogle Scholar
  91. 91.
    Hamada T, Matsunaga S, Fujiwara M, Fujita K, Hirota H, Schmucki R, et al. Solution structure of polytheonamide B, a highly cytotoxic nonribosomal polypeptide from marine sponge. J Am Chem Soc. 2010;132:12941–5.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Araki T, Matsunaga T, Fusetani N. Koshikamide A2, a cytotoxic linear undecapeptide isolated from a marine sponge of Theonella sp. Biosci Biotechnol Biochem. 2005;69:1318–22.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Sadar MD, Williams DE, Mawji NR, Patrick BO, Wikanta T, Chasanah E, et al. Sintokamides A to E, chlorinated peptides from the sponge Dysidea sp. that inhibit transactivation of the N-terminus of the androgen receptor in prostate cancer cells. Org Lett. 2008;10:4947–50.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Ueoka R, Ise Y, Ohtsuka S, Okada S, Yamori T, Matsunaga S, et al. Yaku’amides A and B, cytotoxic linear peptides rich in dehydroamino acids from the marine sponge Ceratopsion sp. J Am Chem Soc. 2010;132:17692–4.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Bewley CA, He H, Williams DH, Faulkner DJ. Aciculitins A-C: cytotoxic and antifungal cyclic peptides from the lithistid sponge Aciculites orientalis. J Am Chem Soc. 1996;118:4314–21.CrossRefGoogle Scholar
  96. 96.
    Kobayashi M, Wang W, Ohyabu N, Kurosu M, Kitagawa I. Improved total synthesis and structure-activity relationship of arenastatin A, a potent cytotoxic spongean depsipeptide. Chem Pharm Bull. 1995;43:1598–600.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Clark DP, Carroll J, Naylor S, Crews P. An antifungal cyclodepsipeptide, Cyclolithistide A, from the sponge Theonella swinhoei. J Org Chem. 1998;63:8757–64.CrossRefGoogle Scholar
  98. 98.
    Nakao Y, Oku N, Matsunaga S, Fusetani N. Cyclotheonamides E2 and E3, new potent serine protease inhibitors from the marine sponge of the genus Theonella. J Nat Prod. 1998;61:667–70.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Zampella A, Sepe V, Luciano P, Bellotta F, Monti MC, D’Auria MV, et al. Homophymine A, an anti-HIV cyclodepsipeptide from the sponge Homophymia sp. J Org Chem. 2008;73:5319–27.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Zampella A, Sepe V, Bellotta F, Luciano P, D'Auria MV, Cresteil T, et al. Homophymines B-E and A1-E1, a family of bioactive cyclodepsipeptides from the sponge Homophymia sp. Org Biomol Chem. 2009;7:4037–44.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Gala F, D'Auria MV, Marino S, Sepe V, Zollo F, Smith CD, et al. Jaspamides M-P: new tryptophan modified jaspamide derivatives from the sponge Jaspis splendens. Tetrahedron. 2009;65:51–6.CrossRefGoogle Scholar
  102. 102.
    Zampella A, Giannini C, Debitus C, Roussakis C, D'Auria MV. New Jaspamide derivatives from the marine sponge Jaspis splendans collected in Vanuatu. J Nat Prod. 1999;62:332–4.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Ebada SS, Wray V, Voogd NJ, Deng Z, Lin W, Proksch P. Two new jaspamide derivatives from the marine sponge Jaspis splendens. Mar Drugs. 2009;7:435–44.CrossRefGoogle Scholar
  104. 104.
    Yeung BKS, Nakao Y, Kinnel RB, Carney JR, Yoshida WY, Scheuer PJ, et al. The kapakahines, cyclic peptides from the marine sponge Cribrochalina olemda. J Org Chem. 1996;61:7168–73.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Shigemori H, Itagaki F, Takao T, Shimonishi Y, Kobayashi JI. Keramamides E, G, H, and J, new cyclic peptides containing an oxazole or a thiazole ring from a Theonella sponge. Pept Chem. 1995;32:17–20.Google Scholar
  106. 106.
    Itagaki F, Shigemori H, Ishibashi M, Nakamura T, Sasaki T, Kobayashi J, et al. Keramamide F, a new thiazole-containing peptide from the Okinawan marine sponge Theonella sp. J Org Chem. 1992;57:5540–2.CrossRefGoogle Scholar
  107. 107.
    Qureshi A, Colin PL, Faulkner DJ. Microsclerodermins F-I, antitumor and antifungal cyclic peptides from the lithistid sponge Microscleroderma sp. Tetrahedron. 2000;56:3679–85.CrossRefGoogle Scholar
  108. 108.
    Silva ED, Williams DE, Andersen RJ, Klix H, Holmes CFB, Allen TM, et al. Motuporin, a potent protein phosphatase inhibitor isolated from the Papua New Guinea sponge Theonella swinhoei Gray. Tetrahedron Lett. 1992;33:1561–4.CrossRefGoogle Scholar
  109. 109.
    D'Auria MV, Gomez-Paloma L, Minale L, Zampella A, Debitus C, Perez J, et al. Neosiphoniamolide A, a novel cyclodepsipeptide, with antifungal activity from the marine sponge Neosiphonia superstes. J Nat Prod. 1995;58:121–3.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Fusetani N, Sugawara T, Matsunaga S, Hirota H. Orbiculamide A: a novel cytotoxic cyclic peptide from a marine sponge Theonella sp. J Am Chem Soc. 1991;113:7811–2.CrossRefGoogle Scholar
  111. 111.
    Festa C, Marino S, Sepe V, D'Auria MV, Bifulco G, Andres R, et al. Perthamides C-F, potent human antipsoriatic cyclopeptides. Tetrahedron. 2011;67:7780–6.CrossRefGoogle Scholar
  112. 112.
    Festa C, Marino S, Sepe V, D’Auria MV, Monti MC, Bucci M, et al. Anti-inflammatory cyclopeptides from the marine sponge Theonella swinhoei. Tetrahedron. 2012;68:2851–7.CrossRefGoogle Scholar
  113. 113.
    Pettit GR, Clewlow PJ, Dufresne C, Doubek DL, Cerny RL, Rutzler K, et al. Antineoplastic agents. 193. Isolation and structure of the cyclic peptide hymenistatin 1. Can J Chem. 1990;68:708–11.CrossRefGoogle Scholar
  114. 114.
    Pettit GR, Herald CL, Boyd MR, Leet JE, Dufresne C, Doubek DL, et al. Antineoplastic agents. 219. Isolation and structure of the cell growth inhibitory constituents from the western Pacific marine sponge Axinella sp. J Med Chem. 1991;34:3339–40.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Pettit GR, Gao F, Cerny R. Antineoplastic agents. 279. Isolation and structure of axinastatin 4 from the western Indian Ocean marine sponge Axinella cf. carteri. Heterocycles. 1993;35:711–8.CrossRefGoogle Scholar
  116. 116.
    Kobayashi J, Tsuda M, Nakamura T, Mikami Y, Shigemori H. Hymenamides A and B, new proline-rich cyclic heptapeptides from the Okinawan marine sponge Hymeniacidon sp. Tetrahedron. 1993;49:2391–402.CrossRefGoogle Scholar
  117. 117.
    Pettit GR, Cichacz Z, Barkoczy J, Dorsaz AC, Herald DL, Williams MD, et al. Isolation and structure of the marine sponge cell growth inhibitory cyclic peptide phakellistatin 1. J Nat Prod. 1993;56:260–7.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Pettit GR, Rhodes MR, Tan R. Antineoplastic agents. 400. Synthesis of the Indian Ocean marine sponge cyclic heptapeptide Phakellistatin 2. J Nat Prod. 1999;62:409–14.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Pettit GR, Xu JP, Cichacz Z, Schmidt JM, Dorsaz AC, Boyd MR, et al. Antineoplastic agents. 303. Isolation and structure of the human cell growth inhibitory phakellistatin 4 from the western Pacific sponge Phakellia costata. Heterocycles. 1995;40:501–6.CrossRefGoogle Scholar
  120. 120.
    Pettit GR, Xu JP, Cichacz ZA, Williams MD, Dorsaz AC, Brune DC, et al. Antineoplastic agents 315. Isolation and structure of the marine sponge cancer cell growth inhibitor phakellistatin 5. Bioorg Med Chem Lett. 1994;4:2091–6.CrossRefGoogle Scholar
  121. 121.
    Yi Y, Li W. Cyclopeptide compound phakellistatin 12 having antitumor activity. CN1396177A. 2003.Google Scholar
  122. 122.
    Jiang QF, Zhou YJ, Yao JZ, Lu JG, Zhu J, Yao B, et al. Total synthesis of a marine cyclic peptide: phakellistatin-13. Huaxue Xuebao. 2007;65:253–6.Google Scholar
  123. 123.
    Zhang HJ, Yi YH, Yang GJ, Hu MY, Cao GD, Yang F, et al. Proline-containing cyclopeptides from the marine sponge Phakellia fusca. J Nat Prod. 2010;73:650–5.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Zhan KX, Jiao WH, Yang F, Li J, Wang SP, Li YS, et al. Reniochalistatins A-E, cyclic peptides from the marine sponge Reniochalina stalagmitis. J Nat Prod. 2014;77:2678–84.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Lorente A, Gil A, Fernández R, Cuevas C, Albericio F, Álvarez M, et al. Phormidolides B and C, cytotoxic agents from the sea: enantioselective synthesis of the macrocyclic core. Chemistry. 2015;21:150–6.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Williamson RT, Boulanger A, Vulpanovici A, Roberts MA, Gerwick WH. Structure and absolute stereochemistry of Phormidolide, a new toxic metabolite from the marine Cyanobacterium Phormidium sp. J Org Chem. 2002;67:7927–36.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Ueoka R, Nakao Y, Kawatsu S, Yaegashi J, Matsumoto Y, Matsunaga S, et al. Gracilioethers A−C, antimalarial metabolites from the marine sponge Agelas gracilis. J Org Chem. 2009;74:4203–7.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Festa C, Lauro G, Marino S, D’Auria MV, Monti MC, Casapullo A, et al. Plakilactones from the marine sponge Plakinastrella mamillaris. Discovery of a new class of marine ligands of peroxisome proliferator-activated receptor γ. J Med Chem. 2012;55:8303–17.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Festa C, Marino S, D'Auria MV, Deharo E, Gonzalez G, Deyssard C, et al. Gracilioethers E–J, new oxygenated polyketides from the marine sponge Plakinastrella mamillaris. Tetrahedron. 2012;68:10157–63.CrossRefGoogle Scholar
  130. 130.
    Festa C, D'Amore C, Renga B, Lauro G, Marino S, D'Auria MV, et al. Oxygenated polyketides from Plakinastrella mamillaris as a new chemotype of PXR agonists. Mar Drugs. 2013;11:2314–27.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Teta R, Irollo E, Della Sala G, Pirozzi G, Mangoni A, Costantino V, et al. Smenamides A and B, chlorinated peptide/polyketide hybr,ids containing a dolapyrrolidinone unit from the Caribbean sponge Smenospongia aurea. Evaluation of their role as leads in antitumor drug research. Mar Drugs. 2013;11:4451–63.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Festa C, Marino S, D’Auria MV, Taglialatela-Scafati O, Deharo E, Petek S, et al. New antimalarial polyketide endoperoxides from the marine sponge Plakinastrella mamillaris collected at Fiji Islands. Tetrahedron. 2013;69:3706–13.CrossRefGoogle Scholar
  133. 133.
    Kubota T, Ishiguro Y, Takahashi-Nakaguchi A, Fromont J, Gonoi T, Kobayashi JI, et al. Manzamenones L–N, new dimeric fatty-acid derivatives from an Okinawan marine sponge Plakortis sp. Bioorg Med Chem Lett. 2013;23:244–7.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Schmitz FJ, Gunasekera SP, Yalamanchili G, Hossain MB, Van der Helm D. Tedanolide: a potent cytotoxic macrolide from the Caribbean sponge Tedania ignis. J Am Chem Soc. 1984;106:7251–2.CrossRefGoogle Scholar
  135. 135.
    Fusetani N, Sugawara T, Matsunaga S, Hirota H. Bioactive marine metabolites: IIIV. Cytotoxic metabolites of the marine sponge Mycale adhaerens Lambe. J Org Chem. 1991;56:4971–4.CrossRefGoogle Scholar
  136. 136.
    Chevallier C, Bugni TS, Feng X, Harper MK, Orendt AM, Ireland CM, et al. Tedanolide C: a potent new 18-membered-ring cytotoxic macrolide isolated from the Papua New Guinea marine sponge Ircinia sp. J Org Chem. 2006;71:2510–3.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Whitson EL, Pluchino KM, Hall MD, McMahon JB, McKee TC. New Candidaspongiolides, tedanolide analogues that selectively inhibit melanoma cell growth. Org Lett. 2011;13:3518–21.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Nishimura S, Matsunaga S, Yoshida S, Nakao Y, Hirota H, Fusetani N. Structure–activity relationship study on 13-deoxytedanolide, a highly antitumor macrolide from the marine sponge Mycale adhaerens. Biorg Med Chem. 2005;13:455–62.CrossRefGoogle Scholar
  139. 139.
    Cheng JF, Lee JS, Sakai R, Jares-Erijman EA, Silva MV, Rinehart KL, et al. Myriaporones 1−4, cytotoxic metabolites from the Mediterranean Bryozoan Myriapora truncate. J Nat Prod. 2007;70:332–6.Google Scholar
  140. 140.
    Nishimura S, Matsunaga S, Yoshida M, Hirota H, Yokoyama S, Fusetani N, et al. 13-Deoxytedanolide, a marine sponge-derived antitumor macrolide, binds to the 60S large ribosomal subunit. Biorg Med Chem. 2005;13:449–54.CrossRefGoogle Scholar
  141. 141.
    Trisciuoglio D, Uranchimeg B, Cardellina JH, Meragelman TL, Matsunaga S, Fusetani N, et al. Induction of apoptosis in human cancer cells by candidaspongiolide, a novel sponge polyketide. J Natl Cancer Inst. 2008;100:1233–46.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Barber JM, Quek NCH, Leahy DC, Miller JH, Bellows DS, Northcote PT, et al. Lehualides E−K, cytotoxic metabolites from the tongan marine sponge Plakortis sp. J Nat Prod. 2011;74:809–15.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Sata N, Abinsay H, Yoshida WY, Horgen FD, Sitachitta N, Kelly M, et al. Lehualides A−D, metabolites from a Hawaiian sponge of the genus Plakortis. J Nat Prod. 2005;68:1400–3.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Zhang H, Conte MM, Capon RJ. Franklinolides A-C from an Australian marine sponge complex: phosphodiesters strongly enhance polyketide cytotoxicity. Angew Chem. 2010;49:9904–6.CrossRefGoogle Scholar
  145. 145.
    Sirirath S, Tanaka J, Ohtani II, Ichiba T, Rachmat R, Ueda K, et al. Bitungolides A−F, new polyketides from the Indonesian sponge Theonella cf. swinhoei. J Nat Prod. 2002;65:1820–3.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Longeon A, Copp BR, Roué M, Dubois J, Valentin A, Petek S, et al. New bioactive halenaquinone derivatives from South Pacific marine sponges of the genus Xestospongia. Biorg. Med. Chem. 2010;18:6006–11.CrossRefGoogle Scholar
  147. 147.
    Lee RH, Slate DL, Moretti R, Alvi KA, Crews P. Marine sponge polyketide inhibitors of protein tyrosine kinase. Biochem Biophys Res Commun. 1992;184:765–72.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Alvi KA, Rodriguez J, Diaz MC, Moretti R, Wilhelm RS, Lee RH, et al. Protein tyrosine kinase inhibitory properties of planar polycyclics obtained from the marine sponge Xestospongia cf. carbonaria and from total synthesis. J Org Chem. 1993;58:4871–80.CrossRefGoogle Scholar
  149. 149.
    Kobayashi JI, Hirase T, Shigemori H, Ishibashi M, Bae MA, Tsuji T, et al. New Pentacyclic compounds from the Okinawan marine sponge Xestospongia sapra. J Nat Prod. 1992;55:994–8.CrossRefGoogle Scholar
  150. 150.
    Kobayashi M, Shimizu N, Kitagawa I, Kyogoku Y, Harada N, Uda H. Absolute stereostructures of halenaquinol and halenaquinol sulfate, pentacyclic hydroquinones from the okinawan marine sponge xestospongia sapra, as determined by theoretical calculation of CD spectra. Tetrahedron Lett. 1985;26:3833–6.CrossRefGoogle Scholar
  151. 151.
    Schmitz FJ, Bloor SJ. Xesto- and halenaquinone derivatives from a sponge, Adocia sp., from Truk lagoon. J Org Chem. 1988;53:3922–5.CrossRefGoogle Scholar
  152. 152.
    Cao S, Foster C, Brisson M, Lazo JS, Kingston DGI. Halenaquinone and xestoquinone derivatives, inhibitors of Cdc25B phosphatase from a Xestospongia sp. Biorg Med Chem. 2005;13:999–1003.CrossRefGoogle Scholar
  153. 153.
    Cafieri F, Fattorusso E, Taglialatela-Scafati O, Ianaro A. Metabolites from the sponge Plakortis simplex. Determination of absolute stereochemistry of plakortin isolation and stereostructure of three plakortin related compounds. Tetrahedron. 1999;55:7045–56.CrossRefGoogle Scholar
  154. 154.
    Fattorusso E, Parapini S, Campagnuolo C, Basilico N, Taglialatela-Scafati O, Taramelli D, et al. Activity against plasmodium falciparum of cycloperoxide compounds obtained from the sponge Plakortis simplex. J Antimicrob Chemother. 2002;50:883–8.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Hu JF, Gao HF, Kelly M, Hamann MT. Plakortides I–L, four new cyclic peroxides from an undescribed Jamaican sponge Plakortis sp. (Homosclerophorida, Plakinidae). Tetrahedron. 2001;57:9379–83.CrossRefGoogle Scholar
  156. 156.
    Sol Jiménez M, Garzón SP, Rodríguez AD. Plakortides M and N, bioactive polyketide endoperoxides from the Caribbean marine sponge Plakortis halichondrioides. J Nat Prod. 2003;66:655–61.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Kobayashi M, Kondo K, Kitagawa I. Antifungal peroxyketal acids from an Okinawan marine sponge of Plakortis sp. Chem Pharm Bull. 1993;41:1324–6.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Fattorusso C, Persico M, Calcinai B, Cerrano C, Parapini S, Taramelli D, et al. Manadoperoxides A−D from the Indonesian sponge Plakortis cfr. simplex. Further insights on the structure−activity relationships of simple 1,2-dioxane antimalarials. J Nat Prod. 2010;73:1138–45.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Fattorusso C, Campiani G, Catalanotti B, Persico M, Basilico N, Parapini S, et al. Endoperoxide derivatives from marine organisms: 1,2-Dioxanes of the plakortin family as novel antimalarial agents. J Med Chem. 2006;49:7088–94.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Shinde PB, Mansoor TA, Luo X, Hong J, Lee CO, Jung JH, et al. Cytotoxic polyketides from the marine sponge Discodermia calyx. ChemInform. 2007;38:990–4.CrossRefGoogle Scholar
  161. 161.
    Matsumoto T, Yanagiya M, Maeno S, Yasuda S. A revised structure of pederin. Tetrahedron Lett. 1968;9:6297–300.CrossRefGoogle Scholar
  162. 162.
    Perry NB, Blunt JW, Munro MHG, Pannell LK. Mycalamide A, an antiviral compound from a New Zealand sponge of the genus Mycale. J Am Chem Soc. 1988;110:4850–1.CrossRefGoogle Scholar
  163. 163.
    Sakemi S, Ichiba T, Kohmoto S, Saucy G, Higa T. Isolation and structure elucidation of onnamide A, a new bioactive metabolite of a marine sponge, Theonella sp. J Am Chem Soc. 1988;110:4851–3.CrossRefGoogle Scholar
  164. 164.
    Perry NB, Blunt JW, Munro MHG, Thompson AM. Antiviral and antitumor agents from a New Zealand sponge, Mycale sp. 2. Structures and solution conformations of mycalamides a and B. J Org Chem. 1990;55:223–7.CrossRefGoogle Scholar
  165. 165.
    Fusetani N, Sugawara T, Matsunaga S. Bioactive marine metabolites. 41. Theopederins A-E, potent antitumor metabolites from a marine sponge, Theonella sp. J Org Chem. 1992;57:3828–32.CrossRefGoogle Scholar
  166. 166.
    Matsunaga S, Fusetani N, Nakao Y. Eight new cytotoxic metabolites closely related to onnamide A from two marine sponges of the genus Theonella. Tetrahedron. 1992;48:8369–76.CrossRefGoogle Scholar
  167. 167.
    Tsukamoto S, Matsunaga S, Fusetani N, Toh-E A. Theopederins F-J: five new antifungal and cytotoxic metabolites from the marine sponge, theonella swinhoei 1. Tetrahedron. 1999;55:13697–702.CrossRefGoogle Scholar
  168. 168.
    Simpson JS, Garson MJ, Blunt JW, Munro MHG, Hooper JNA. Mycalamides C and D, cytotoxic compounds from the marine sponge Stylinos n. species. J Nat Prod. 2000;63:704–6.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    West LM, Northcote PT, Hood KA, Miller JH, Page MJ. Mycalamide D, a new cytotoxic amide from the New Zealand marine sponge Mycale Species. J Nat Prod. 2000;63:707–9.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Vuong D, Capon RJ, Lacey E, Gill JH, Heiland K, Friedel T, et al. Onnamide F: a new nematocide from a southern Australian marine sponge. Trachycladus laevispirulifer. J Nat. 2001;64:640–2.CrossRefGoogle Scholar
  171. 171.
    Paul GK, Gunasekera SP, Longley RE, Pomponi SA. Theopederins K and L. highly potent cytotoxic metabolites from a marine sponge Discodermia Species. J Nat Prod. 2002;65:59–61.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Kato Y, Fusetani N, Matsunaga S, Hashimoto K, Fujita S, Furuya T, et al. Bioactive marine metabolites: XVI. Calyculin A. A novel antitumor metabolite from the marine sponge Discodermia calyx. J Am Chem Soc. 1986;108:2780–1.CrossRefGoogle Scholar
  173. 173.
    Kato Y, Fusetani N, Matsunaga S, Hashimoto K, Koseki K. Isolation and structure elucidation of calyculins B, C, and D, novel antitumor metabolites, from the marine sponge Discodermia calyx. Am Chem Soc. 1988;53:3930–2.Google Scholar
  174. 174.
    Matsunaga S, Wakimoto T, Fusetani N. Isolation of four new calyculins from the marine sponge Discodermia calyx 1. J Org Chem. 1997;62:2640–2.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Matsunaga S, Wakimoto T, Fusetani N, Suganuma M. Isolation of dephosphonocalyculin a from the marine sponge, Discodermia calyx. Tetrahedron Lett. 1997;38:3763–4.CrossRefGoogle Scholar
  176. 176.
    Wakimoto T, Matsunaga S, Takai A, Fusetani N. Insight into binding of Calyculin A to protein phosphatase 1: isolation of hemicalyculin A and chemical transformation of Calyculin A. Chem Biol. 2002;9:309–19.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Johnson TA, Tenney K, Cichewicz RH, Morinaka BI, White KN, Amagata T, et al. Sponge-derived fijianolide polyketide class: further evaluation of their structural and cytotoxicity properties. J Med Chem. 2007;50:3795–803.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Quinoa E, Kakou Y, Crews P. Fijianolides, polyketide heterocycles from a marine sponge. J Org Chem. 1988;53:3642–4.CrossRefGoogle Scholar
  179. 179.
    Corley DG, Herb R, Moore RE, Scheuer PJ, Paul VJ. Laulimalides. New potent cytotoxic macrolides from a marine sponge and a nudibranch predator. J Org Chem. 1988;53:3644–6.CrossRefGoogle Scholar
  180. 180.
    Tanaka JI, Higa T, Bernardinelli G, Jefford CW. New cytotoxic macrolides from the sponge Fasciospongia rimosa. Chem Lett. 1996;25:255–6.CrossRefGoogle Scholar
  181. 181.
    Mooberry SL, Tien G, Hernandez AH, Plubrukarn A, Davidson BS. Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents. Cancer Res. 1999;59:653–60.PubMedPubMedCentralGoogle Scholar
  182. 182.
    Gallagher BM Jr, Fang FG, Johannes CW, Pesant M, Tremblay MR, Zhao H, et al. Synthesis and biological evaluation of (−)-laulimalide analogues. Bioorg Med Chem Lett. 2004;14:575–9.PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Berrue F, Thomas OP, Laville R, Prado S, Golebiowski J, Fernandez R, et al. The marine sponge Plakortis zyggompha: a source of original bioactive polyketides. Tetrahedron. 2007;63:2328–34.CrossRefGoogle Scholar
  184. 184.
    Huang XH, van Soest R, Roberge M, Andersen RJ. Spiculoic acids A and B, new polyketides isolated from the Caribbean marine sponge Plakortis angulospiculatus. Org Lett. 2004;6:75–8.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Berrué F, Thomas OP, Fernández R, Amade P. Iso-, Nor-, and dinor-spiculoic acids A, polyketides from the marine sponge Plakortis zyggompha. J Nat Prod. 2005;68:547–9.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Ching Shen Y, Sai Prakash CV, Guh JH. New pentacyclic polyketide dimeric peroxides from a Taiwanese marine sponge Petrosia elastica. Tetrahedron Lett. 2004;45:2463–6.CrossRefGoogle Scholar
  187. 187.
    Murakami N, Sugimoto M, Kobayashi M. Participation of the β-hydroxyketone part for potent cytotoxicity of callystatin A, a spongean polyketide. Biorg Med Chem. 2001;9:57–67.CrossRefGoogle Scholar
  188. 188.
    Hirata Y, Uemura D. Halichondrins – antitumor polyether macrolides from a marine sponge. Pure Appl Chem. 1986;58:701–10.CrossRefGoogle Scholar
  189. 189.
    Kernan MR, Faulkner DJ. Halichondramide, an antifungal macrolide from the sponge halichondria sp. Tetrahedron Lett. 1987;28:2809–12.CrossRefGoogle Scholar
  190. 190.
    Kernan MR, Molinski TF, Faulkner DJ. Macrocyclic antifungal metabolites from the Spanish dancer nudibranch Hexabranchus sanguineus and sponges of the genus Halichondria. J Org Chem. 1988;53:5014–20.CrossRefGoogle Scholar
  191. 191.
    Fusetani N, Yasumuro K, Matsunaga S, Hashimoto K. Mycalolides A – C, hybrid macrolides of ulapualides and halichondramide, from a sponge of the genus Mycale. Tetrahedron Lett. 1989;30:2809–12.CrossRefGoogle Scholar
  192. 192.
    Kobayashi JI, Murata O, Shigemori H, Sasaki T, Jaspisamides A-C. New Cytotoxic Macrolides from the Okinawan Sponge Jaspis sp. J Nat Prod. 1993;56:787–91.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Carmely S, Kashman Y. Structure of swinholide-a, a new macrolide from the marine sponge theonella swinhoei. Tetrahedron Lett. 1985;26:511–4.CrossRefGoogle Scholar
  194. 194.
    Kobayashi M, Tanaka JI, Katori T, Matsuura M, Kitagawa I. Structure of swinholide A, a potent cytotoxic macrolide from the Okinawan marine sponge theonella swinhoei. Tetrahedron Lett. 1989;30:2963–6.CrossRefGoogle Scholar
  195. 195.
    Kitagawa I, Kobayashi M, Katori T, Yamashita M, Tanaka J, Doi M, et al. Absolute stereostructure of swinholide A, a potent cytotoxic macrolide from the Okinawan marine sponge Theonella swinhoei. J Am Chem Soc. 1990;112:3710–2.CrossRefGoogle Scholar
  196. 196.
    Kobayashi M, Tanaka JI, Katori T, Kitagawa I. Marine natural products. XXIII.: Three new cytotoxic dimeric macrolides, Swinholides B and C and Isoswinholide A, congeners of Swinholide A, from the Okinawan marine sponge Theonella swinhoei. Chem Pharm Bull. 1990;38:2960–6.PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Kobayashi M, Aoki S, Sakai H, Kawazoe K, Kihara N, Sasaki T, et al. Altohyrtin A, a potent anti-tumor macrolide from the Okinawan marine sponge Hyrtios altum. Tetrahedron Lett. 1993;34:2795–8.CrossRefGoogle Scholar
  198. 198.
    Kobayashi M, Aoki S, Sakai H, Kihara N, Sasaki T, Kitagawa I. Altohyrtins B and C and 5-desacetylaltohyrtin A, potent cytotoxic macrolide congeners of altohyrtin A, from the Okinawan marine sponge Hyrtios altum. Chem Pharm Bull. 1993;41:989–91.PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Pettit GR, Tan R, Gao F, Williams MD, Doubek DL, Boyd MR, et al. Isolation and structure of halistatin 1 from the eastern Indian Ocean marine sponge Phakellia carteri. J Org Chem. 1993;58:2538–43.CrossRefGoogle Scholar
  200. 200.
    Fusetani N, Shinoda K, Matsunaga S. Bioactive marine metabolites. 48. Cinachyrolide A: a potent cytotoxic macrolide possessing two spiro ketals from marine sponge Cinachyra sp. J. Am. Chem Soc. 1993;115:3977–81.CrossRefGoogle Scholar
  201. 201.
    D'Auria MV, Debitus C, Paloma LG, Minale L, Zampella A. Superstolide A: a potent cytotoxic macrolide of a new type from the new Caledonian deep water marine sponge Neosiphonia superstes. J Am Chem Soc. 1994;116:6658–63.CrossRefGoogle Scholar
  202. 202.
    D'Auria MV, Paloma LG, Minale L, Zampella A, Debitus C. A novel cytotoxic macrolide, Superstolide B, related to Superstolide A, from the new Caledonian marine sponge Neosiphonia superstes. J Nat Prod. 1994;57:1595–7.PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    D'Auria MV, Paloma LG, Minale L, Zampella A, Verbist JF, Roussakis C, et al. Reidispongiolide A and B, two new potent cytotoxic macrolides from the new caledonian sponge Reidispongia coerulea. Tetrahedron. 1994;50:4829–34.CrossRefGoogle Scholar
  204. 204.
    Horton PA, Koehn FE, Longley RE, McConnell OJ. Lasonolide A, a new cytotoxic macrolide from the marine sponge Forcepia sp. J Am Chem Soc. 1994;116:6015–6.CrossRefGoogle Scholar
  205. 205.
    Litaudon M, Hart JB, Blunt JW, Lake RJ. Munro, M.h. Isohomohalichondrin B, a new antitumour polyether macrolide from the New Zealand deep-water sponge Lissodendoryx sp. Tetrahedron Lett. 1994;35:9435–8.CrossRefGoogle Scholar
  206. 206.
    Searle PA, Molinski TF. Phorboxazoles A and B: potent cytostatic macrolides from marine sponge Phorbas species. J Am Chem Soc. 1995;117:8126–31.CrossRefGoogle Scholar
  207. 207.
    Rho MC, Park YH, Sasaki S, Ishibashi M, Kondo K, Kobayashi JI, et al. The mode of rabbit platelet shape change and aggregation induced by theonezolide-A, a novel polyketide macrolide, isolated from the Okinawan marine sponge Theonella sp. Can J Physiol Pharmacol. 1996;74:193–9.PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    D’Ambrosio M, Guerriero A, Pietra F, Debitus C. Leucascandrolide A, a new type of macrolide: the first powerfully bioactive metabolite of calcareous sponges (Leucascandra caveolata, a new genus from the coral sea). Helv Chim Acta. 1996;79:51–60.CrossRefGoogle Scholar
  209. 209.
    D’Ambrosio M, Tatò M, Pocsfalvi G, Debitus C, Pietra F. Leucascandrolide B, a new 16-membered, extensively methyl-branched polyoxygenated macrolide from the Calcareous sponge Leucascandra caveolata from northeastern waters of New Caledonia. Helv Chim Acta. 1999;82:347–53.CrossRefGoogle Scholar
  210. 210.
    Tanaka JI, Higa T. Zampanolide, a new cytotoxic marcrolide from a marine sponge. Tetrahedron Lett. 1996;37:5535–8.CrossRefGoogle Scholar
  211. 211.
    Litaudon M, Hickford SJH, Lill RE, Lake RJ, Blunt JW, Munro MHG. Antitumor polyether macrolides: new and hemisynthetic Halichondrins from the New Zealand deep-water sponge Lissodendoryx sp. J Org Chem. 1997;62:1868–71.CrossRefGoogle Scholar
  212. 212.
    Erickson KL, Beutler JA, Cardellina JH, Boyd MR. Salicylihalamides A and B, novel cytotoxic macrolides from the marine sponge Haliclona sp. J Org Chem. 1997;62:8188–92.PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    Matsunaga S, Nogata Y, Fusetani N. Thiomycalolides: new cytotoxic trisoxazole-containing macrolides isolated from a marine sponge Mycale sp. J Nat Prod. 1998;61:663–6.PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Takada N, Sato H, Suenaga K, Arimoto H, Yamada K, Ueda K, et al. Isolation and structures of haterumalides NA, NB, NC, ND, and NE, novel macrolides from an Okinawan sponge Ircinia sp. Tetrahedron Lett. 1999;40:6309–12.CrossRefGoogle Scholar
  215. 215.
    Cantrell CL, Gustafson KR, Cecere MR, Pannell LK, Boyd MR. Chondropsins A and B: novel tumor cell growth-inhibitory macrolide lactams from the marine sponge Chondropsis sp. J Am Chem Soc. 2000;122:8825–9.CrossRefGoogle Scholar
  216. 216.
    Rashid MA, Gustafson KR, Boyd MR. New chondropsin macrolide lactams from marine sponges in the genus Ircinia. Tetrahedron Lett. 2001;42:1623–6.CrossRefGoogle Scholar
  217. 217.
    Rashid MA, Cantrell CL, Gustafson KR, Boyd MR. Chondropsin D, a new 37-membered-ring macrolide lactam from the marine sponge Chondropsis Species. J Nat Prod. 2001;64:1341–4.PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    West LM, Northcote PT, Battershill CN. Peloruside A: a potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J Org Chem. 2000;65:445–9.PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Singh AJ, Xu CX, Xu X, West LM, Wilmes A, Chan A, et al. Peloruside B, a potent antitumor macrolide from the New Zealand marine sponge Mycale hentscheli: isolation, structure, total synthesis, and bioactivity. J Org Chem. 2010;75:2–10.PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Cutignano A, Bruno I, Bifulco G, Casapullo A, Debitus C, Gomez-Paloma L, et al. Dactylolide, a new cytotoxic macrolide from the Vanuatu sponge Dactylospongia sp. Eur J Org Chem. 2001;2001:775–8.CrossRefGoogle Scholar
  221. 221.
    Phuwapraisirisan P, Matsunaga S, van Soest RWM, Fusetani N. Isolation of a new mycalolide from the marine sponge Mycale izuensis. J Nat Prod. 2002;65:942–3.PubMedCrossRefPubMedCentralGoogle Scholar
  222. 222.
    Sandler JS, Colin PL, Kelly M, Fenical W. Cytotoxic macrolides from a new species of the deep-water marine sponge Leiodermatium. J Org Chem. 2006;71:7245–51.PubMedCrossRefPubMedCentralGoogle Scholar
  223. 223.
    Youssef DTA, Mooberry SL. Hurghadolide A and Swinholide I, potent actin-microfilament disrupters from the Red Sea sponge Theonella swinhoei. J Nat Prod. 2006;69:154–7.PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Wright AE, Botelho JC, Guzmán E, Harmody D, Linley P, McCarthy PJ, et al. Neopeltolide, a macrolide from a lithistid sponge of the family Neopeltidae. J Nat Prod. 2007;70:412–6.PubMedCrossRefPubMedCentralGoogle Scholar
  225. 225.
    Takada K, Choi BW, Rashid MA, Gamble WR, Cardellina JH, Van QN, et al. Structural assignment of Poecillastrins B and C, macrolide lactams from the deep-water Caribbean sponge Poecillastra Species. J Nat Prod. 2007;70:428–31.PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    Plaza A, Baker HL, Bewley CA. Mirabilin, an antitumor macrolide lactam from the marine sponge Siliquariaspongia mirabilis. J Nat Prod. 2008;71:473–7.PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    Bishara A, Rudi A, Aknin M, Neumann D, Ben-Califa N, Kashman Y, et al. Salarins A and B and tulearin A: new cytotoxic sponge-derived macrolides. Org Lett. 2008;10:153–6.PubMedCrossRefPubMedCentralGoogle Scholar
  228. 228.
    Hickford SJH, Blunt JW, Munro MHG. Antitumour polyether macrolides: four new halichondrins from the New Zealand deep-water marine sponge Lissodendoryx sp. Biorg Med Chem. 2009;17:2199–203.CrossRefGoogle Scholar
  229. 229.
    Paterson I, Dalby SM, Roberts JC, Naylor GJ, Guzmán EA, Isbrucker R, et al. Leiodermatolide, a potent antimitotic macrolide from the marine sponge Leiodermatium sp. Angew Chem Int Ed. 2011;50:3219–23.CrossRefGoogle Scholar
  230. 230.
    Sirirak T, Kittiwisut S, Janma C, Yuenyongsawad S, Suwanborirux K, Plubrukarn A. Kabiramides J and K, trisoxazole macrolides from the sponge Pachastrissa nux. J Nat Prod. 2011;74:1288–92.PubMedCrossRefPubMedCentralGoogle Scholar
  231. 231.
    Sirirak T, Brecker L, Plubrukarn A. Kabiramide L, a new antiplasmodial trisoxazole macrolide from the sponge Pachastrissa nux. Nat Prod Res. 2012;27:1213–9.PubMedCrossRefPubMedCentralGoogle Scholar
  232. 232.
    Pham CD, Hartmann R, Böhler P, Stork B, Wesselborg S, Lin W, et al. Callyspongiolide, a cytotoxic macrolide from the marine sponge Callyspongia sp. Org Lett. 2014;16:266–9.PubMedCrossRefPubMedCentralGoogle Scholar
  233. 233.
    Hirota H, Tomono Y, Fusetani N. Terpenoids with antifouling activity against barnacle larvae from the marine sponge Acanthella cavernosa. Tetrahedron. 1996;52:2359–68.CrossRefGoogle Scholar
  234. 234.
    Yong KWL, Jankam A, Hooper JNA, Suksamrarn A, Garson MJ. Stereochemical evaluation of sesquiterpene quinones from two sponges of the genus Dactylospongia and the implication for enantioselective processes in marine terpene biosynthesis. Tetrahedron. 2008;64:6341–8.CrossRefGoogle Scholar
  235. 235.
    Ovenden SPB, Nielson JL, Liptrot CH, Willis RH, Tapiolas DM, Wright AD, et al. Sesquiterpene benzoxazoles and sesquiterpene quinones from the marine sponge Dactylospongia elegans. J Nat Prod. 2011;74:65–8.PubMedCrossRefPubMedCentralGoogle Scholar
  236. 236.
    Suto S, Tanaka N, Fromont J. Kobayashi, J.i. Halichonadins G-J, new sesquiterpenoids from a sponge Halichondria sp. Tetrahedron Lett. 2011;52:3470–3.CrossRefGoogle Scholar
  237. 237.
    Jiao WH, Huang XJ, Yang JS, Yang F, Piao SJ, Gao H, et al. Dysidavarones A-D, new sesquiterpene quinones from the marine sponge Dysidea avara. Org Lett. 2012;14:202–5.PubMedCrossRefPubMedCentralGoogle Scholar
  238. 238.
    Yamazaki H, Nakazawa T, Sumilat DA, Takahashi O, Ukai K, Takahashi S, Namikoshi M. Euryspongins A-C, three new unique sesquiterpenes from a marine sponge Euryspongia sp. Bioorg Med Chem Lett. 2013;23:2151–4.PubMedCrossRefPubMedCentralGoogle Scholar
  239. 239.
    Sperry S, Valeriote FA, Corbett TH, Crews P. Isolation and cytotoxic evaluation of marine sponge-derived norterpene peroxides. J Nat Prod. 1998;61:241–7.PubMedCrossRefPubMedCentralGoogle Scholar
  240. 240.
    Liu Y, Hong J, Lee CO, Im KS, Kim ND, Choi JS, et al. Cytotoxic pyrrolo and furanoterpenoids from the sponge Sarcotragus species. J Nat Prod. 2002;65:1307–14.PubMedCrossRefPubMedCentralGoogle Scholar
  241. 241.
    Agena M, Tanaka C, Hanif N, Yasumoto-Hirose M, Tanaka J. New cytotoxic spongian diterpenes from the sponge Dysidea cf. arenaria. Tetrahedron. 2009;65:1495–9.CrossRefGoogle Scholar
  242. 242.
    Wattanapiromsakul C, Chanthathamrongsiri N, Bussarawit S, Yuenyongsawad S, Plubrukarn A, Suwanborirux K. 8-Isocyanoamphilecta-11(20),15-diene, a new antimalarial isonitrile diterpene from the sponge Ciocalapata sp. Can J Chem. 2009;87:612–8.CrossRefGoogle Scholar
  243. 243.
    Calcul L, Tenney K, Ratnam J, McKerrow JH, Crews P. Structural variations to the 9-N-methyladeninium diterpenoid hybrid commonly isolated from Agelas sponges. Aust J Chem. 2011;64:846.CrossRefGoogle Scholar
  244. 244.
    Uddin MH, Hossain MK, Nigar M, Roy MC, Tanaka J. New cytotoxic spongian-class rearranged diterpenes from a marine sponge. Chem Nat Compd. 2012;48:412–5.CrossRefGoogle Scholar
  245. 245.
    Dattelbaum JD, Singh AJ, Field JJ, Miller JH, Northcote PT. The nitrogenous hamigerans: unusual amino acid-derivatized aromatic diterpenoid metabolites from the New Zealand marine sponge Hamigera tarangaensis. J Org Chem. 2015;80:304–12.PubMedCrossRefPubMedCentralGoogle Scholar
  246. 246.
    Lee JS, Abdjul DB, Yamazaki H, Takahashi O, Kirikoshi R, Ukai K, et al. Strongylophorines, new protein tyrosine phosphatase 1B inhibitors, from the marine sponge Strongylophora strongilata collected at Iriomote Island. Bioorg Med Chem Lett. 2015;25:3900–2.PubMedCrossRefPubMedCentralGoogle Scholar
  247. 247.
    Noda A, Sakai E, Kato H, Losung F, Mangindaan REP, de Voogd NJ, Yokosawa H, et al. Strongylophorines, meroditerpenoids from the marine sponge Petrosia corticata, function as proteasome inhibitors. Bioorg Med Chem Lett. 2015;25:2650–3.PubMedCrossRefPubMedCentralGoogle Scholar
  248. 248.
    Zeng L, Fu X, Su J, Pordesimo EO, Traeger SC, Schmitz FJ. Novel bishomoscalarane sesterterpenes from the sponge Phyllospongia foliascens. J Nat Prod. 1991;54:421–7.CrossRefGoogle Scholar
  249. 249.
    De Rosa S, Puliti R, Crispino A, De Giulio A, De Sena C, Iodice C, et al. 25-Deoxycacospongionolide B and cacospongionolide C, two new terpenoids from the sponge Fasciospongia cavernosa. Tetrahedron. 1995;51:10731–6.CrossRefGoogle Scholar
  250. 250.
    Tsuchiya N, Sato A, Hata T, Sato N, Sasagawa K, Kobayashi T. Cytotoxic scalarane sesterterpenes from a sponge, Hyrtios erecta. J Nat Prod. 1998;61:468–73.PubMedCrossRefPubMedCentralGoogle Scholar
  251. 251.
    Craig KS, Williams DE, Hollander I, Frommer E, Mallon R, Collins K, et al. Novel sesterterpenoid and norsesterterpenoid RCE-protease inhibitors isolated from the marine sponge Hippospongia sp. Tetrahedron Lett. 2002;43:4801–4.CrossRefGoogle Scholar
  252. 252.
    Zhang HJ, Yi YH, Yang F, Chen WS, Lin HW. Sesterterpenes and a new sterol from the marine sponge Phyllospongia foliascens. Molecules. 2010;15:834–41.PubMedCrossRefPubMedCentralGoogle Scholar
  253. 253.
    Bae JM, Jeon JE, Lee YJ, Lee HS, Sim CJ, Oh KB, et al. Sesterterpenes from the tropical sponge Coscinoderma sp. J Nat Prod. 2011;74:1805–11.PubMedCrossRefPubMedCentralGoogle Scholar
  254. 254.
    Jeon JE, Bae JM, Lee KJ, Oh KB, Shin JH. Scalarane Sesterterpenes from the sponge Hyatella sp. J Nat Prod. 2011;74:847–51.PubMedCrossRefPubMedCentralGoogle Scholar
  255. 255.
    Piao SJ, Zhang HJ, Lu HY, Yang F, Jiao WH, Yi YH, et al. Hippolides A-H, acyclic manoalide derivatives from the marine sponge Hippospongia lachne. J Nat Prod. 2011;74:1248–54.PubMedCrossRefPubMedCentralGoogle Scholar
  256. 256.
    Rho JR, Hwang BS, Joung S, Byun MR, Hong JH, Lee HY. Phorbasones A and B, sesterterpenoids isolated from the marine sponge Phorbas sp. and induction of osteoblast differentiation. Org Lett. 2011;13:884–7.PubMedCrossRefPubMedCentralGoogle Scholar
  257. 257.
    Wang W, Lee Y, Lee TG, Mun B, Giri AG, Lee J, et al. Phorone A and isophorbasone A, sesterterpenoids isolated from the marine sponge Phorbas sp. Org Lett. 2012;14:4486–9.PubMedCrossRefPubMedCentralGoogle Scholar
  258. 258.
    Daoust J, Chen M, Wang M, Williams DE, Chavez MAG, Wang YA, et al. Sesterterpenoids isolated from a northeastern Pacific Phorbas sp. J Org Chem. 2013;78:8267–73.PubMedCrossRefPubMedCentralGoogle Scholar
  259. 259.
    Hahn D, Won DH, Mun B, Kim H, Han C, Wang W, et al. Cytotoxic scalarane sesterterpenes from a Korean marine sponge Psammocinia sp. Bioorg Med Chem Lett. 2013;23:2336–9.PubMedCrossRefPubMedCentralGoogle Scholar
  260. 260.
    Wang W, Mun B, Lee Y, Venkat Reddy M, Park Y, Lee J, et al. Bioactive sesterterpenoids from a Korean sponge Monanchora sp. J Nat Prod. 2013;76:170–7.PubMedCrossRefPubMedCentralGoogle Scholar
  261. 261.
    Festa C, Cassiano C, D’Auria MV, Debitus C, Monti MC, De Marino S. Scalarane sesterterpenes from Thorectidae sponges as inhibitors of TDP-43 nuclear factor. Org Biomol Chem. 2014;12:8646–55.PubMedCrossRefPubMedCentralGoogle Scholar
  262. 262.
    Hassan MHA, Rateb ME, Hetta M, Abdelaziz TA, Sleim MA, Jaspars M, et al. Scalarane sesterterpenes from the Egyptian Red Sea sponge Phyllospongia lamellosa. Tetrahedron. 2015;71:577–83.CrossRefGoogle Scholar
  263. 263.
    Woo J-K, Kim C-K, Ahn C-H, Oh D-C, Oh K-B, Shin J. Additional sesterterpenes and a nortriterpene saponin from the sponge Clathria gombawuiensis. J Nat Prod. 2015;78:218–24.PubMedCrossRefPubMedCentralGoogle Scholar
  264. 264.
    Li J, Xu B, Cui J, Deng Z, de Voogd NJ, Proksch P, et al. Globostelletins A–I, cytotoxic isomalabaricane derivatives from the marine sponge Rhabdastrella globostellata. Biorg Med Chem. 2010;18:4639–47.CrossRefGoogle Scholar
  265. 265.
    Sunassee SN, Ransom T, Henrich CJ, Beutler JA, Covell DG, McMahon JB, et al. Steroidal alkaloids from the marine sponge Corticium niger that inhibit growth of human colon carcinoma cells. J Nat Prod. 2014;77:2475–80.PubMedCrossRefPubMedCentralGoogle Scholar
  266. 266.
    Morinaka BI, Masuno MN, Pawlik JR, Molinski TF. Amaranzole A, a new N-imidazolyl steroid from Phorbas amaranthus. Org Lett. 2007;9:5219–22.PubMedCrossRefPubMedCentralGoogle Scholar
  267. 267.
    Langjae R, Bussarawit S, Yuenyongsawad S, Ingkaninan K, Plubrukarn A. Acetylcholinesterase-inhibiting steroidal alkaloid from the sponge Corticium sp. Steroids. 2007;72:682–5.PubMedCrossRefPubMedCentralGoogle Scholar
  268. 268.
    Aoki S, Watanabe Y, Tanabe D, Setiawan A, Arai M, Kobayashi M, et al. Novel abeo-9(10-19)-androstane-type steroidal alkaloids with isoquinoline unit, from marine sponge Corticium simplex. Tetrahedron Lett. 2007;48:4485–8.CrossRefGoogle Scholar
  269. 269.
    Aoki S, Watanabe Y, Sanagawa M, Setiawan A, Kotoku N, Kobayashi M. Cortistatins A, B, C, and D, anti-angiogenic steroidal alkaloids, from the marine sponge Corticium simplex. J Am Chem Soc. 2006;128:3148–9.PubMedCrossRefPubMedCentralGoogle Scholar
  270. 270.
    Ridley CP, Faulkner DJ. New cytotoxic steroidal alkaloids from the Philippine sponge Corticium niger. J Nat Prod. 2003;66:1536–9.PubMedCrossRefPubMedCentralGoogle Scholar
  271. 271.
    Borbone N, De Marino S, Iorizzi M, Zollo F, Debitus C, Esposito G, et al. Minor steroidal alkaloids from the marine sponge Corticium sp. J Nat Prod. 2002;65:1206–9.PubMedCrossRefPubMedCentralGoogle Scholar
  272. 272.
    Marino SD, Iorizzi M, Zollo F, Roussakis C, Debitus C. Plakinamines C and D and three other new steroidal alkaloids from the sponge Corticium sp. Eur JOrg Chem. 1999;1999:697–701.CrossRefGoogle Scholar
  273. 273.
    Ushiyama S, Umaoka H, Kato H, Suwa Y, Morioka H, Rotinsulu H, et al. Manadosterols A and B, sulfonated sterol dimers inhibiting the Ubc13-Uev1A interaction, isolated from the marine sponge Lissodendryx fibrosa. J Nat Prod. 2012;75:1495–9.PubMedCrossRefPubMedCentralGoogle Scholar
  274. 274.
    Murayama S, Imae Y, Takada K, Kikuchi J, Nakao Y, van Soest RW, et al. Shishicrellastatins, inhibitors of cathepsin B, from the marine sponge Crella (Yvesia) spinulata. Bioorg Med Chem. 2011;19:6594–8.PubMedCrossRefPubMedCentralGoogle Scholar
  275. 275.
    Whitson EL, Bugni TS, Chockalingam PS, Conception GP, Feng X, Jin G, et al. Fibrosterol sulfates from the Philippine sponge Lissodendoryx (Acanthodoryx) fibrosa: sterol dimers that inhibit PKC. J Org Chem. 2009;74:5902–8.PubMedCrossRefPubMedCentralGoogle Scholar
  276. 276.
    Whitson EL, Bugni TS, Chockalingam PS, Concepcion GP, Harper MK, He M, et al. Spheciosterol sulfates, PKCzeta inhibitors from a philippine sponge Spheciospongia sp. J Nat Prod. 2008;71:1213–7.PubMedCrossRefPubMedCentralGoogle Scholar
  277. 277.
    Guzii AG, Makarieva TN, Denisenko VA, Dmitrenok PS, Burtseva YV, Krasokhin VB, et al. Topsentiasterol sulfates with novel iodinated and chlorinated side chains from the marine sponge Topsentia sp. Tetrahedron Lett. 2008;49:7191–3.CrossRefGoogle Scholar
  278. 278.
    Zhang HJ, Sun JB, Lin HW, Wang ZL, Tang H, Cheng P, et al. A new cytotoxic cholesterol sulfate from marine sponge Halichondria rugosa. Nat Prod Res. 2007;21:953–8.PubMedCrossRefPubMedCentralGoogle Scholar
  279. 279.
    Boonlarppradab C, Faulkner DJ. Eurysterols A and B, cytotoxic and antifungal steroidal sulfates from a marine sponge of the genus Euryspongia. J Nat Prod. 2007;70:846–8.PubMedCrossRefPubMedCentralGoogle Scholar
  280. 280.
    Yang SW, Buivich A, Chan TM, Smith M, Lachowicz J, Pomponi SA, et al. A new sterol sulfate, Sch 572423, from a marine sponge, Topsentia sp. Bioorg Med Chem Lett. 2003;13:1791–4.PubMedCrossRefPubMedCentralGoogle Scholar
  281. 281.
    Lerch ML, Faulkner DJ. Unusual polyoxygenated sterols from a Philippines sponge Xestospongia sp. Tetrahedron. 2001;57:4091–4.CrossRefGoogle Scholar
  282. 282.
    D'Auria MV, Giannini C, Zampella A, Minale L, Debitus C, Roussakis C. Crellastatin A: a cytotoxic bis-steroid sulfate from the Vanuatu marine sponge Crella sp. J Org Chem. 1998;63:7382–8.PubMedCrossRefPubMedCentralGoogle Scholar
  283. 283.
    Patil AD, Freyer AJ, Breen A, Carte B, Johnson RK. Halistanol disulfate B, a novel sulfated sterol from the sponge Pachastrella sp.:inhibitor of endothelin converting enzyme. J Nat Prod. 1996;59:606–8.PubMedCrossRefGoogle Scholar
  284. 284.
    Regalado EL, Tasdemir D, Kaiser M, Cachet N, Amade P, Thomas OP. Antiprotozoal steroidal saponins from the marine sponge Pandaros acanthifolium. J Nat Prod. 2010;73:1404–10.PubMedCrossRefPubMedCentralGoogle Scholar
  285. 285.
    Stead P, Hiscox S, Robinson PS, Pike NB, Sidebottom PJ, Roberts AD, et al. Eryloside F, a novel penasterol disaccharide possessing potent thrombin receptor antagonist activity. Bioorg Med Chem Lett. 2000;10:661–4.PubMedCrossRefPubMedCentralGoogle Scholar
  286. 286.
    Machida K, Abe T, Arai D, Okamoto M, Shimizu I, de Voogd NJ, et al. Cinanthrenol A, an estrogenic steroid containing phenanthrene nucleus, from a marine sponge Cinachyrella sp. Org Lett. 2014;16:1539–41.PubMedCrossRefPubMedCentralGoogle Scholar
  287. 287.
    Gong J, Sun P, Jiang N, Riccio R, Lauro G, Bifuico G, et al. New steroids with a rearranged skeleton as (h)P300 inhibitors from the sponge Theonella swinhoei. Org Lett. 2014;16:2224–7.PubMedCrossRefPubMedCentralGoogle Scholar
  288. 288.
    Nguyen XC, Longeon A, Pham VC, Urvois F, Bressy C, Trinh TT, et al. Antifouling 26,27-cyclosterols from the Vietnamese marine sponge Xestospongia testudinaria. J Nat Prod. 2013;76:1313–8.PubMedCrossRefPubMedCentralGoogle Scholar
  289. 289.
    Keyzers RA, Daoust J, Davies-Coleman MT, Van Soest R, Balgi A, Donohue E. Autophagy-modulating aminosteroids isolated from the sponge Cliona celata. Org Lett. 2008;10:2959–62.PubMedCrossRefPubMedCentralGoogle Scholar
  290. 290.
    Teruya T, Nakagawa S, Koyama T, Arimoto H, Kita M, Uemura D. Nakiterpiosin and Nakiterpiosinone, novel cytotoxic C-Nor-D-Homosteroids from the Okinawan sponge Terpios hoshinota. Tetrahedron. 2004;60:6989–93.CrossRefGoogle Scholar
  291. 291.
    Miyamoto T, Kodama K, Aramaki Y, Higuchi R. Soest, Orostanal R.W.M.V. A novel abeo-sterol inducing apoptosis in leukemia cell from a marine sponge, Stelletta hiwasaensis. Tetrahedron Lett. 2001;42:6349–51.CrossRefGoogle Scholar
  292. 292.
    Rosa SD, Giulio AD, Crisping A, Iodice C, Tommonaro G. New 9,11-sSecosterol from the Tyrrhenian sponge Fasciospongia Cavernosa. Nat Prod Lett. 1999;13:15–20.CrossRefGoogle Scholar
  293. 293.
    Kobayashi M, Chen YJ, Higuchi K, Aoki S, Kitagawa I. Aragusteroketals A and C, two novel cytotoxic steroids from a marine sponge of Xestospongia sp. Chem Pharm Bull. 1996;44:1840–2.CrossRefGoogle Scholar
  294. 294.
    Kobayashi J, Shinonaga H, Shigemori H. Xestobergsterol C, a new pentacyclic steroid from the Okinawan marine sponge Ircinia sp. and absolute stereochemistry of xestobergsterol A. J Nat Prod. 1995;58:312–8.PubMedCrossRefPubMedCentralGoogle Scholar
  295. 295.
    Iguchi K, Fujita M, Nagaoka H, Mitome H, Yamada Y. Aragusterol a: A potent antitumor marine steroid from the okinawan sponge of the genus, Xestospongia. Tetrahedron Lett. 1993;34:6277–80.CrossRefGoogle Scholar
  296. 296.
    Iguchi K, Shimura H, Taira S, Yokoo C, Matsumoto K, Yamada Y. Aragusterol B and D, new 26,27-cyclosterols from the Okinawan marine sponge of the genus Xestospongia. J Org Chem. 1994;59:7499–502.CrossRefGoogle Scholar
  297. 297.
    Shimura H, Iguchi K, Yamada Y, Nakaike S, Yamagishi T, Matsumoto K, et al. A novel halogenated marine steroid from an Okinawan sponge, Xestospongia sp., possessing potent antitumor activity. Experientia. 1994;50:134–6.PubMedCrossRefPubMedCentralGoogle Scholar
  298. 298.
    He WF, Xue DQ, Yao LG, Li J, Liu HL, Guo YW. A new bioactive steroidal ketone from the South China Sea sponge Xestospongiatestudinaria. J Asian Nat Prod Res. 2015;18:1–5.Google Scholar
  299. 299.
    Abdelmohsen UR, Cheng C, Reimer A, Kozjak-Pavlovic V, Ibrahim AK, Rudel T, et al. Antichlamydial sterol from the Red Sea sponge Callyspongia aff. implexa. Planta Med. 2015;81:382–7.PubMedCrossRefPubMedCentralGoogle Scholar
  300. 300.
    Govindam SV, Choi BK, Yoshioka Y, Kanamoto A, Fujiwara T, Okamoto T, et al. Novel cytotoxic polyoxygenated steroids from an Okinawan sponge Dysidea sp. Biosci Biotechnol Biochem. 2012;76:999–1002.PubMedCrossRefPubMedCentralGoogle Scholar
  301. 301.
    Dai J, Sorribas A, Yoshida WY, Kelly M, Williams PG. Topsentinols, 24-isopropyl steroids from the marine sponge Topsentia sp. J Nat Prod. 2010;73:1597–600.PubMedCrossRefPubMedCentralGoogle Scholar
  302. 302.
    Ma WS, Mutka T, Vesley B, Amsler MO, McClintock JB, Amsler CD, et al. Norselic acids A-E, highly oxidized anti-infective steroids that deter mesograzer predation, from the Antarctic sponge Crella sp. J Nat Prod. 2009;72:1842–6.PubMedCrossRefPubMedCentralGoogle Scholar
  303. 303.
    Holland IP, McCluskey A, Sakoff JA, Gilbert J, Chau N, Robinson PJ, et al. Steroids from an Australian sponge Psammoclema sp. J Nat Prod. 2009;72:102–6.PubMedCrossRefPubMedCentralGoogle Scholar
  304. 304.
    Xu S, Liao X, Du B, Zhou X, Huang Q, Wu C. A series of new 5,6-epoxysterols from a Chinese sponge Ircinia aruensis. Steroids. 2008;73:568–73.PubMedCrossRefPubMedCentralGoogle Scholar
  305. 305.
    Mansoor TA, Hong J, Lee CO, Bae SJ, Im KS, Jung JH. Cytotoxic sterol derivatives from a marine sponge Homaxinella sp. J Nat Prod. 2005;68:331–6.PubMedCrossRefPubMedCentralGoogle Scholar
  306. 306.
    Fattorusso E, Taglialatela-Scafati O, Petrucci F, Bavestrello G, Calcinai B, Cerrano C, et al. Polychlorinated androstanes from the burrowing sponge Cliona nigricans. Org Lett. 2004;6:1633–5.PubMedCrossRefPubMedCentralGoogle Scholar
  307. 307.
    Funel C, Berrue F, Roussakis C, Fernandez Rodriguez R, Amade P. New cytotoxic steroids from the Indian Ocean sponge Axinella cf. bidderi. J Nat Prod. 2004;67:491–4.PubMedCrossRefPubMedCentralGoogle Scholar
  308. 308.
    Santafe G, Paz V, Rodriguez J, Jimenez C. Novel cytotoxic oxygenated C29 sterols from the Colombian marine sponge Polymastia tenax. J Nat Prod. 2002;65:1161–4.PubMedCrossRefPubMedCentralGoogle Scholar
  309. 309.
    Gallimore WA, Kelly M, Scheuer PJ. Gelliusterols A–D, new acetylenic sterols from a sponge, Gellius species. J Nat Prod. 2001;64:741–4.PubMedCrossRefPubMedCentralGoogle Scholar
  310. 310.
    Leone PdA, Redburn J, Hooper JNA, Quinn RJ. Polyoxygenated dysidea sterols that inhibit the binding of [I 125] IL-8 to the human recombinant IL-8 receptor type A. J. Nat. Prod. 2000;63:694–7.CrossRefGoogle Scholar
  311. 311.
    Gunasekera SP, Kelly-Borges M, Longley RE. A new cytotoxic sterol methoxymethyl ether from a deep water marine sponge Scleritoderma sp. cf. paccardi. J Nat Prod. 1996;59:161–2.PubMedCrossRefPubMedCentralGoogle Scholar
  312. 312.
    Belarbi E. Producing drugs from marine sponges. Biotechnol Adv. 2003;21:585–98.CrossRefGoogle Scholar
  313. 313.
    Blunt JW, Copp BR, Keyzers RA, Munro M, Prinsep MR. Marine natural products. Nat Prod Rep. 2013;30:237–323.PubMedCrossRefPubMedCentralGoogle Scholar
  314. 314.
    Bergmann W, BURKE DC. Contributions to the study of marine products. XXXIX. The nucleosides of sponges. III. 1 Spongothymidine and spongouridine2. J Org Chem. 1955;20:1501–7.CrossRefGoogle Scholar
  315. 315.
    Pigneux A, Perreau V, Jourdan E, Vey N, Dastugue N, Huguet F, et al. Adding lomustine to idarubicin and cytarabine for induction chemotherapy in older patients with acute myeloid leukemia: the BGMT 95 trial results. Haematologica. 2007;92:1327–34.PubMedCrossRefPubMedCentralGoogle Scholar
  316. 316.
    Lancet JE, Roboz GJ, Cripe LD, Michelson GC, Fox JA, Leavitt RD, et al. A phase 1b/2 study of vosaroxin in combination with cytarabine in patients with relapsed or refractory acute myeloid leukemia. Haematologica. 2015;100:231–7.PubMedCrossRefPubMedCentralGoogle Scholar
  317. 317.
    Oku N, Matsunaga S, van Soest RW, Fusetani N, Renieramycin J. A highly cytotoxic tetrahydroisoquinoline alkaloid, from a marine sponge Neopetrosia sp. J Nat Prod. 2003;66:1136–9.PubMedCrossRefPubMedCentralGoogle Scholar
  318. 318.
    Halim H, Chunhacha P, Suwanborirux K, Chanvorachote P. Anticancer and antimetastatic activities of Renieramycin M, a marine tetrahydroisoquinoline alkaloid, in human non-small cell lung cancer cells. Anticancer Res. 2011;31:193–201.PubMedPubMedCentralGoogle Scholar
  319. 319.
    Teeyapant R, Woerdenbag HJ, Kreis P, Hacker J, Wray V, Witte L, et al. Antibiotic and cytotoxic activity of brominated compounds from the marine sponge Verongia aerophoba. Z Naturforsch C. 2003;48:939–45.CrossRefGoogle Scholar
  320. 320.
    Song J, Rechkoblit O, Bestor TH, Patel DJ. Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science. 2011;331:1036–40.PubMedCrossRefPubMedCentralGoogle Scholar
  321. 321.
    Florean C, Schnekenburger M, Lee JY, Kim KR, Mazumder A, Song S, et al. Discovery and characterization of Isofistularin-3, a marine brominated alkaloid, as a new DNA demethylating agent inducing cell cycle arrest and sensitization to TRAIL in cancer cells. Oncotarget. 2016;7:24027–49.PubMedCrossRefPubMedCentralGoogle Scholar
  322. 322.
    Meketa ML, Weinreb SM. Total synthesis of ageladine A, an angiogenesis inhibitor from the marine sponge Agelas nakamurai. Org Lett. 2006;8:1443–6.PubMedCrossRefPubMedCentralGoogle Scholar
  323. 323.
    Shengule SR, Loa-Kum-Cheung WL, Parish CR, Blairvacq M, Meijer L, Nakao Y, et al. A one-pot synthesis and biological activity of ageladine A and analogues. J Med Chem. 2011;54:2492–503.PubMedCrossRefPubMedCentralGoogle Scholar
  324. 324.
    Bickmeyer U. The alkaloid Ageladine A, originally isolated from marine sponges, used for pH-sensitive imaging of transparent marine animals. Mar Drugs. 2012;10:223–33.PubMedCrossRefPubMedCentralGoogle Scholar
  325. 325.
    Copp BR, Fairchild CR, Cornell L, Casazza AM, Robinson S, Ireland CM. Naamidine A is an antagonist of the epidermal growth factor receptor and an in vivo active antitumor agent. J Med Chem. 1998;41:3909–11.PubMedCrossRefPubMedCentralGoogle Scholar
  326. 326.
    LaBarbera DV, Modzelewska K, Glazar AI, Gray PD, Kaur M, Liu T, et al. The marine alkaloid naamidine A promotes caspase-dependent apoptosis in tumor cells. Anti-Cancer Drugs. 2009;20:425–36.PubMedCrossRefPubMedCentralGoogle Scholar
  327. 327.
    Jaimovich E, Mattei C, Liberona JL, Cardenas C, Estrada M, Barbier J, et al. Xestospongin B, a competitive inhibitor of IP3-mediated Ca2+ signalling in cultured rat myotubes, isolated myonuclei, and neuroblastoma (NG108-15) cells. FEBS Lett. 2005;2005(579):2051–7.CrossRefGoogle Scholar
  328. 328.
    Akl MR, Ayoub NM, Ebrahim HY, Mohyeldin MM, Orabi KY, Foudah AI, et al. Araguspongine C induces autophagic death in breast cancer cells through suppression of c-Met and HER2 receptor tyrosine kinase signaling. Mar Drugs. 2015;13(1):288–311.PubMedCrossRefPubMedCentralGoogle Scholar
  329. 329.
    Schroeder FC, Kau TR, Silver PA, Clardy J. The psammaplysenes, specific inhibitors of FOXO1a nuclear export. J Nat Prod. 2005;68:574–6.PubMedCrossRefPubMedCentralGoogle Scholar
  330. 330.
    Berry E, Hardt JL, Clardy J, Lurain JR, Kim JJ. Induction of apoptosis in endometrial cancer cells by psammaplysene A involves FOXO1. Gynecol Oncol. 2009;112:331–6.PubMedCrossRefPubMedCentralGoogle Scholar
  331. 331.
    Pimentel AA, Felibertt P, Sojo F, Colman L, Mayora A, Silva ML, et al. The marine sponge toxin agelasine B increases the intracellular Ca(2+) concentration and induces apoptosis in human breast cancer cells (MCF-7). Cancer Chemother Pharmacol. 2012;69:71–83.PubMedCrossRefPubMedCentralGoogle Scholar
  332. 332.
    Martin MJ, Coello L, Fernandez R, Reyes F, Rodriguez A, Murcia C, et al. Isolation and first total synthesis of PM050489 and PM060184, two new marine anticancer compounds. J Am Chem Soc. 2013;135:10164–71.PubMedCrossRefPubMedCentralGoogle Scholar
  333. 333.
    Pera B, Barasoain I, Pantazopoulou A, Canales A, Matesanz R, Rodriguez-Salarichs J, et al. New interfacial microtubule inhibitors of marine origin, PM050489/PM060184, with potent antitumor activity and a distinct mechanism. ACS Chem Biol. 2013;8:2084–94.PubMedCrossRefPubMedCentralGoogle Scholar
  334. 334.
    Martinez-Diez M, Guillen-Navarro MJ, Pera B, Bouchet BP, Martinez-Leal JF, Barasoain I, et al. PM060184, a new tubulin binding agent with potent antitumor activity including P-glycoprotein over-expressing tumors. Biochem Pharmacol. 2014;88:291–302.PubMedCrossRefPubMedCentralGoogle Scholar
  335. 335.
    Cortes J, Vahdat L, Blum JL, Twelves C, Campone M, Roche H, et al. Phase II study of the halichondrin B analog eribulin mesylate in patients with locally advanced or metastatic breast cancer previously treated with an anthracycline, a taxane, and capecitabine. J Clin Oncol. 2010;28:3922–8.PubMedCrossRefPubMedCentralGoogle Scholar
  336. 336.
    Gitlitz BJ, Tsao-Wei DD, Groshen S, Davies A, Koczywas M, Belani CP, et al. A phase II study of halichondrin B analog eribulin mesylate (E7389) in patients with advanced non-small cell lung cancer previously treated with a taxane: a California cancer consortium trial. J Thorac Oncol. 2012;7:574–8.PubMedCrossRefPubMedCentralGoogle Scholar
  337. 337.
    Spira AI, Iannotti NO, Savin MA, Neubauer M, Gabrail NY, Yanagihara RH, et al. A phase II study of eribulin mesylate (E7389) in patients with advanced, previously treated non-small-cell lung cancer. Clin Lung Cancer. 2012;13:31–8.PubMedCrossRefPubMedCentralGoogle Scholar
  338. 338.
    Su JH, Chang WB, Chen HM, El-Shazly M, Du YC, Kung TH, et al. 10-acetylirciformonin B, a sponge furanoterpenoid, induces DNA damage and apoptosis in leukemia cells. Molecules. 2012;17:11839–48.PubMedCrossRefPubMedCentralGoogle Scholar
  339. 339.
    Yamanokuchi R, Imada K, Miyazaki M, Kato H, Watanabe T, Fujimuro M, et al. Hyrtioreticulins A-E, indole alkaloids inhibiting the ubiquitin-activating enzyme, from the marine sponge Hyrtios reticulatus. Bioorg Med Chem. 2012;20:4437–42.PubMedCrossRefPubMedCentralGoogle Scholar
  340. 340.
    Bagola K, von Delbruck M, Dittmar G, Scheffner M, Ziv I, Glickman MH, et al. Ubiquitin binding by a CUE domain regulates ubiquitin chain formation by ERAD E3 ligases. Mol Cell. 2013;50:528–39.PubMedCrossRefPubMedCentralGoogle Scholar
  341. 341.
    Hood KA, West LM, Rouwe B, Northcote PT, Berridge MV, Wakefield SJ, et al. Peloruside A, a novel antimitotic agent with paclitaxel-like microtubule- stabilizing activity. Cancer Res. 2002;62:3356–60.PubMedPubMedCentralGoogle Scholar
  342. 342.
    Wilmes A, O'Sullivan D, Chan A, Chandrahasen C, Paterson I, Northcote PT, La Flamme AC, et al. Synergistic interactions between peloruside A and other microtubule-stabilizing and destabilizing agents in cultured human ovarian carcinoma cells and murine T cells. Cancer Chemother Pharmacol. 2011;68:117–26.PubMedCrossRefPubMedCentralGoogle Scholar
  343. 343.
    Meyer CJ, Krauth M, Wick MJ, Shay JW, Gellert G, De Brabander JK, et al. Peloruside A inhibits growth of human lung and breast tumor xenografts in an athymic nu/nu mouse model. Mol Cancer Ther. 2015;14:1816–23.PubMedCrossRefPubMedCentralGoogle Scholar
  344. 344.
    Chevallier C, Richardson AD, Edler MC, Hamel E, Harper MK, Ireland CM. A new cytotoxic and tubulin-interactive milnamide derivative from a marine sponge Cymbastela sp. Org Lett. 2003;5:3737–9.PubMedCrossRefPubMedCentralGoogle Scholar
  345. 345.
    Kuznetsov G, TenDyke K, Towle MJ, Cheng H, Liu J, Marsh JP, et al. Tubulin-based antimitotic mechanism of E7974, a novel analogue of the marine sponge natural product hemiasterlin. Mol Cancer Ther. 2009;8:2852–60.PubMedCrossRefPubMedCentralGoogle Scholar
  346. 346.
    Rho JR, Hwang BS, Sim CJ, Joung S, Lee HY, Kim HJ. Phorbaketals A, B, and C, sesterterpenoids with a spiroketal of hydrobenzopyran moiety isolated from the marine sponge Phorbas sp. Org Lett. 2009;11:5590–3.PubMedCrossRefPubMedCentralGoogle Scholar
  347. 347.
    Seo YJ, Lee KT, Rho JR, Choi JH. Phorbaketal A, isolated from the marine sponge Phorbas sp., exerts its anti-inflammatory effects via NF-kappaB inhibition and heme oxygenase-1 activation in lipopolysaccharide-stimulated macrophages. Mar Drugs. 2015;13:7005–19.PubMedCrossRefPubMedCentralGoogle Scholar
  348. 348.
    Mencarelli A, D'Amore C, Renga B, Cipriani S, Carino A, Sepe V, et al. Solomonsterol A, a marine pregnane-X-receptor agonist, attenuates inflammation and immune dysfunction in a mouse model of arthritis. Mar Drugs. 2014;12:36–53.CrossRefGoogle Scholar
  349. 349.
    Park EJ, Cheenpracha S, Chang LC, Pezzuto JM. Suppression of cyclooxygenase-2 and inducible nitric oxide synthase expression by epimuqubilin A via IKK/IkappaB/NF-kappaB pathways in lipopolysaccharide-stimulated RAW 264.7 cells. Phytochem Lett. 2011;4:426–31.PubMedCrossRefPubMedCentralGoogle Scholar
  350. 350.
    Delfourne E, Bastide J. Marine pyridoacridine alkaloids and synthetic analogues as antitumor agents. Med Res Rev. 2003;23:234–52.PubMedCrossRefPubMedCentralGoogle Scholar
  351. 351.
    Dirsch VM, Kirschke SO, Estermeier M, Steffan B, Vollmar AM. Apoptosis signaling triggered by the marine alkaloid ascididemin is routed via caspase-2 and JNK to mitochondria. Oncogene. 2004;23:1586–93.PubMedCrossRefPubMedCentralGoogle Scholar
  352. 352.
    Simone M, Erba E, Damia G, Vikhanskaya F, Di Francesco AM, Riccardi R, et al. Variolin B and its derivate deoxy-variolin B: new marine natural compounds with cyclin-dependent kinase inhibitor activity. Eur J Cancer. 2005;41:2366–77.PubMedCrossRefPubMedCentralGoogle Scholar
  353. 353.
    Schyschka L, Rudy A, Jeremias I, Barth N, Pettit GR, Vollma AM. Spongistatin 1: a new chemosensitizing marine compound that degrades XIAP. Leukemia. 2008;22:1737–45.PubMedCrossRefPubMedCentralGoogle Scholar
  354. 354.
    Rothmeier AS, Ischenko I, Joore J, Garczarczyk D, Furst R, Bruns CJ, et al. Investigation of the marine compound spongistatin 1 links the inhibition of PKCalpha translocation to nonmitotic effects of tubulin antagonism in angiogenesis. FASEB J. 2009;23:1127–37.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Bing-Nan Han
    • 1
  • Li-Li Hong
    • 1
  • Bin-Bin Gu
    • 1
  • Yang-Ting Sun
    • 1
  • Jie Wang
    • 1
  • Jin-Tang Liu
    • 1
  • Hou-Wen Lin
    • 1
  1. 1.Marine Drugs Research Center, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations