Advertisement

Immunological Features of AECHB

  • Ping Lei
  • Guan-Xin Shen
  • Fu-Sheng Wang
  • Qin Ning
  • Hong Ren
  • Wei-Ming Yan
  • Di Wu
Chapter

Abstract

This chapter describes the immunologic features of liver, the immune mediated pathogenesis of both innate and adaptive immune system, the key role of immune coagulation, antiviral therapy and immune response in AECHB and HBV ACLF.
  1. 1.

    The liver is an organ with predominant innate immunity, playing an important role not only in host defenses but also in liver injury and repair. The liver is continuously exposed to a large antigenic load that includes pathogens, toxins, tumor cells and harmless dietary antigens. The range of local immune mechanisms required to cope with this diverse immunological challenge is now being appreciated. The liver contains large numbers of phagocytic cells, antigen-presenting cells and lymphocytes. The liver comprises enrichment of large numbers of non-specific immune cells, including natural killer (NK) cells, T cells expressing γδ (γδT cells) and T cells expressing NK molecules (NKT cells). These cells are crucial for early defenses against viral infection through direct cytotoxic and non-cytolytic mechanisms. In addition, these cells participate in the progression of severe hepatitis B by initiating specific immune response (Doherty DG, O’Farrelly C, Immunol Rev. 174:5–20, 2000; Racanelli V, Rehermann B. Hepatology 43(2 Suppl 1):S54–62, 2006; Crispe IN. Annu Rev Immunol. 27:147–163, 2009; Gong FL. Medical immunology, 4th ed. Science Publishing House, pp. 371–377).

     
  2. 2.

    As the first sensor to recognize HBV and its products, pattern recognition receptors (PRRs) such as toll--like receptors (TLRs), induce the expression of immune related genes and proinflammatory genes by activating intracellular signal transduction pathways. These pathways induce inflammatory and anti-viral responses that affect the occurrence and development of severe hepatitis B.

     
  3. 3.

    Clinical outcomes of viral infection are closely related to the specificity and intensity of specific immune responses. During the development of severe hepatitis B, the host immune response is characterized by dysfunction of antigen specific CTLs and imbalance of T lymphocyte subsets. Large numbers of infiltrated non-specific inflammatory cells and apoptosis of hepatocytes were also observed in liver tissue from patients. The liver immune system is characterized by the unique tolerance nature of liver. HBV persistence induces systemic adaptive cellular and humoral immunotolerance, which severely impairs the HBV clearance.

     
  4. 4.

    Most coagulation factors, anticoagulant proteins and components of the fibrinolytic system are synthesized and cleared in the liver. Severe hepatitis or liver failure can cause coagulation abnormalities, including microcirculation disorders of the liver induced by macrophages and fibrinogen-like protein 2(fgl2) prothrombinase, peripheral circulation dysfunction induced by impaired liver function, as well as disseminated intravascular coagulation (DIC). Coagulation failure has been typically thought of as one of the six most characteristic organ/system failure(s) during ACLF progress.

     
  5. 5.

    Currently approved anti-viral treatment options includes Nucleos(t)ide analogues (NAs) and interferon-a (IFN-a). NAs and Peg-IFN have differential effects on the innate and adaptive immune responses. Early anti-viral treatment can not only inhibit virus replication, but also help in the recovery of host immunity.

     

References

  1. 1.
    Doherty DG, O’Farrelly C. Innate and adaptive lymphoid cells in the human liver. Immunol Rev. 2000;174:5–20.CrossRefPubMedGoogle Scholar
  2. 2.
    Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology. 2006;43(2 Suppl 1):S54–62.CrossRefPubMedGoogle Scholar
  3. 3.
    Crispe IN. The liver as a lymphoid organ. Annu Rev Immunol. USA. 2009;27:147–63.Google Scholar
  4. 4.
    Gong FL. Medical immunology, 4th ed. Science Publishing House. China. p. 371–7.Google Scholar
  5. 5.
    Heymann F, Tacke F. Immunology in the liver—from homeostasis to disease. Nat Rev Gastroenterol Hepatol. 2016;13(2):88–110.CrossRefGoogle Scholar
  6. 6.
    Protzer U, Maini MK, Knolle PA. Living in the liver: hepatic infections. Natl Rev. 2012;12(3):201–13.Google Scholar
  7. 7.
    Klugewitz K, Adams DH, Emoto M, Eulenburg K, Hamann A. The composition of intrahepatic lymphocytes: shaped by selective recruitment? Trends Immunol. 2004;25(11):590–4.CrossRefPubMedGoogle Scholar
  8. 8.
    Godfrey DI, Uldrich AP, Mccluskey J, Rossjohn J, Moody DB. The burgeoning family of unconventional T cells. Nat Immunol. 2015;16(11):1114–23.CrossRefPubMedGoogle Scholar
  9. 9.
    Norris S, Collins C, Doherty DG, Smith F, McEntee G, Traynor O, Nolan N, Hegarty J, O’Farrelly C. Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. J Hepatol. 1998;28(1):84–90.CrossRefPubMedGoogle Scholar
  10. 10.
    Peng H, Wisse E, Tian Z. Liver natural killer cells: subsets and roles in liver immunity. Cell Mol Immunol. 2016;13(3):328–36.CrossRefPubMedGoogle Scholar
  11. 11.
    Bandyopadhyay K, Marrero I, Kumar V. NKT cell subsets as key participants in liver physiology and pathology. Cell Mol Immunol. 2016;13(3):337–46.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Crispe IN. Hepatic T cells and liver tolerance. Nat Rev Immunol. 2003;3(1):51–62.CrossRefPubMedGoogle Scholar
  13. 13.
    Jenne CN, Kubes P. Immune surveillance by the liver. Nat Immunol. 2013;14(10):996–1006.CrossRefPubMedGoogle Scholar
  14. 14.
    Doherty DG. Immunity, tolerance and autoimmunity in the liver: a comprehensive review. J Autoimmun. 2016;66:60–75.CrossRefPubMedGoogle Scholar
  15. 15.
    Grant CR, Liberal R. Liver immunology: how to reconcile tolerance with autoimmunity. Clin Res Hepatol Gastroenterol. 2017;41(1):6–16.CrossRefPubMedGoogle Scholar
  16. 16.
    Thomson AW, O’Connell PJ, Steptoe RJ, Lu L. Immunobiology of liver dendritic cells. Immunol Cell Biol. 2002;80(1):65–73.CrossRefPubMedGoogle Scholar
  17. 17.
    Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.CrossRefGoogle Scholar
  18. 18.
    Han Q, Zhang C, Zhang J, Tian Z. The role of innate immunity in HBV infection. SeminImmunopathol. 2013;35(1):23–38.Google Scholar
  19. 19.
    Gao B. Basic liver immunology. Cell Mol Immunol. 2016;13(3):265–6.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sun C, Sun H, Zhang C, Tian Z. NK cell receptor imbalance and NK cell dysfunction in HBV infection and hepatocellular carcinoma. Cell Mol Immunol. 2015;12(3):292–302.CrossRefPubMedGoogle Scholar
  21. 21.
    Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol. 2010;10(11):753–66.CrossRefPubMedGoogle Scholar
  22. 22.
    Shuai Z, Leung MW, He X, Zhang W, Yang G, Leung PS, Eric Gershwin M. Adaptive immunity in the liver. Cell Mol Immunol. 2016;13(3):354–68.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wherry EJ, Ahmed R. Memory CD8 T-cell differentiation during viral infection. J Virol. 2004;78(11):5535–45.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wang FS, Zhang Z. Host immunity influences disease progression and antiviral efficacy in humans infected with hepatitis B virus. Expert Rev Gastroenterol Hepatol. 2009;3(5):499–512.CrossRefPubMedGoogle Scholar
  25. 25.
    Kong X, Sun R, Chen Y, Wei H, Tian Z. γδT cells drive myeloid-derived suppressor cell-mediated CD8+ T cell exhaustion in hepatitis B virus-induced immunotolerance. J Immunol. 2014;193(4):1645–53.CrossRefPubMedGoogle Scholar
  26. 26.
    Dunn C, Peppa D, Khanna P, Nebbia G, Jones M, Brendish N, Lascar RM, Brown D, Gilson RJ, Tedder RJ, Dusheiko GM, Jacobs M, Klenerman P, Maini MK. Temporal analysis of early immune responses in patients with acute hepatitis B virus infection. Gastroenterology. 2009;137(4):1289–300.CrossRefPubMedGoogle Scholar
  27. 27.
    Bowen DG, Zen M, Holz L, Davis T, McCaughan GW, Bertolino P. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity. J Clin Invest. 2004;114(5):701–12.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol. 2010;10(11):753–66.CrossRefPubMedGoogle Scholar
  29. 29.
    Han Q, Lan P, Zhang J, Zhang C, Tian Z. Reversal of hepatitis B virus-induced systemic immune tolerance by intrinsic innate immune stimulation. J Gastroenterol Hepatol. 2013;28(Suppl 1):132–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Revill P, Yuan Z. New insights into how HBV manipulates the innate immune response to establish acute and persistent infection. Antivir Ther. 2013;18:1–15.CrossRefPubMedGoogle Scholar
  31. 31.
    Thimme R, Wieland S, Steiger C, Ghrayeb J, Reimann KA, Purcell RH, Chisad FV. CD8+ T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J Virol. 2003;77:68–76.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Busca A, Kumar A. Innate immune response in hepatitis B (HBV) infection. Virol J. 2014;11:22.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Liu HY, Zhang XY. Innate immune recognition of hepatitis B virus. World J Hepatol. 2015;28:2319–22.CrossRefGoogle Scholar
  34. 34.
    Chang KM. Immunopathogenesis of clinics. J C Virus Infection Liver Dis. 2003;7:89–105.CrossRefGoogle Scholar
  35. 35.
    Ferrari C. HBV and the immune response. Liver Int. 2015;35(Suppl 1):121–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Geier A, Dietrich CG, Voigt S, Ananthanarayanan M, Lammert F, Schmitz A, Trauner M, et al. Cytokine-dependent regulation of hepatic organic anion transporter gene transactivators in mouse liver. Am J Physiol Gastrointest Liver Physiol. 2005;289:G831–41.CrossRefPubMedGoogle Scholar
  37. 37.
    Higuchi H, Bronk SF, Takikawa Y, Werneburg N, Takimotor E-DW, Gores GJ. The bile acid glycochenodeoxycholate induces trail-receptor2 / DR5 expression and apoptosis. J Biol Chem. 2001;276:38610–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Faubion WA, Guicciardi ME, Miyoshi H, Bronk SF, Robert PJ, Svingen PA, Kaufmann SH, et al. Toxic bile salts induce rodent hepatocyte apoptosis via direct action of Fas. J Clin lnvest. 1999;103:137–45.CrossRefGoogle Scholar
  39. 39.
    Levy GA, Liu M, Ding J, et al. Molecular and functional analysis of the human prothrombinase gene (hfgl2) and its role in viral hepatitis. Am J Pathol. 2000;156(4):1217–25.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kilgore NE, Ford MI, Margot CD, Jones DS, Reichardt P. Evavo1d BD necessary defining the parameters for T-cell recognition of ligands that vary in potency Immunologic research, vol. 29; 2004. p. 29–40.Google Scholar
  41. 41.
    Wang S, Chen L. T lymphocyte co-signaling pathways of the B7-CD28 family. Cell Mol Immunol. 2004;1:37–42.PubMedGoogle Scholar
  42. 42.
    Chandok MR, Farber DL. Control of memory T cell signaling generation and function. Semin Immunol. 2004;16:285–93.CrossRefPubMedGoogle Scholar
  43. 43.
    Rehermann B, Nascimbeni M. Immunology and hepatitis C virus B virus infection. Nat Rev Immunol. 2005;5:215–29.CrossRefPubMedGoogle Scholar
  44. 44.
    Grakoui A, Shonkry NH, Woollard DJ, Han JH, Hanson HL, Ghrayeb J, Murthy KK, et al. HCV persistence and immune evasion in the absence of memory T cell help. Science. 2003;302:659–62.CrossRefGoogle Scholar
  45. 45.
    Khakoo SI, Thio CL, Martin MP, Brooks CR, Gao X, Astemborski J, Cheng J, et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis B virus infection. Science. 2004;305:872–4.CrossRefGoogle Scholar
  46. 46.
    Crotta S, Sdlla A, Wack A, D’Andrea A, Nuti S, D’Oro U, Mosca M, et al. Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein. J Exp Med. 2002;195:35–41.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Tseng CT, Klimpel GR. Binding of the hepatitis C virus envelope protein E2 to CD81 inhibits natural killer cell functions. J Exp Med. 2002;195:43–9.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    O’Connor GM, Hart OM, Gardiner CM. Putting the natural killer cell in its place. Immunology. 2006;117:1–10.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Orange JS, Ballas ZK. Natural killer cells in human health and disease. Clin Immunol. 2006;118:1–10.CrossRefPubMedGoogle Scholar
  50. 50.
    Zhu C, Sun Y, Luo X, et al. Novel mfgl2 anti-sense plasmid inhibits murine fgl2 expression and ameliorates murine hepatitis virus type 3-induced fulminant hepatitis in BALB/cJ mice. Hum Gene Ther. 2006;17:589–600.CrossRefPubMedGoogle Scholar
  51. 51.
    Ning Q, Liu M, Kongkham P, Lai MM, Marsden PA, Tseng J, Pereira B, Belyavskyi M, Leibowitz J, Phillips MJ, Levy G. The nucleocapsid protein of murine virus type 3 induces journal transcription of the novel prothrombinase Gene FGL2. J Biol Chem. 1999;274(15):9930–6.CrossRefPubMedGoogle Scholar
  52. 52.
    Ning Q, Lakatoo S, Liu M, Yang W, Wang Z, Phillips MJ, Levy G. Induction of prothrombinase fgl2 by the nucleocapsid protein of virulent mouse hepatitis virus is dependent on host hepatic nuclear factor-4 alpha. J Biol Chem. 2003;278(18):15541–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Ashton-Rickardt PG. The granule pathway of programmed cell death. Crit Rev Immunol. 2005;25:161–82.CrossRefPubMedGoogle Scholar
  54. 54.
    Russell JH, Ley TJ. Lymphocyte-mediated cytotoxicity. Annu Rev Immunol. 2002;20:323–70.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kam CM, Hudig D, Powers JC. Granzymes (lymphocyte serine proteases): characterization with natural and synthetic substrates and inhibitors. Biochim Biophys Acta. 2000;1477:307, 323.CrossRefGoogle Scholar
  56. 56.
    Beresford PJ, Zhang D, Oh DY, Fan Z, Greef EL, Russo ML, Jaju M, et al. Granzyme A activates an endoplasmic reticulum-associated caspase-independent nuclease to induce single-stranded DNA nicks. J Biol Chem. 2001;276:43285–93.CrossRefPubMedGoogle Scholar
  57. 57.
    Pham CT, Ley TJ. Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. In: Proc Natl Acad Sci U S A, vol. 96; 1999. p. 8627–32.Google Scholar
  58. 58.
    Simon MM, Hausmann M, Tran T, Ebnet K, Tschopp J, Thahla R, Mullbacher A. In vitro and ex-vivo-derived cytolytic leukocyte s from granzyme A x B double knockout mice are defective in granule-mediated apoptosis but not lysis of target cells. J Exp Med. 1997;186:1781–6.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Johnson H, Scorrano L, Korsmeyer SJ, Ley TJ. Cell death induced by granzyme C. Blood. 2003;101:3093–101.CrossRefPubMedGoogle Scholar
  60. 60.
    Kell JM, Waterhouse NJ, Cretney E, Browne KA, Ellis S, Trapani JA, Smyth MJ. Granzyme M mediates a novel form of perforin-dependent cell death. J Biol Chem. 2004;279:22236–42.CrossRefGoogle Scholar
  61. 61.
    Vermijlen D, Luo D, Froelich CJ, MedemaJP KJA, Willems E, Braet F, et al. Hepatic natural killer cells exclusively kill splenic/blood natural killer-resistant tumor cells by the perforin/granzyme pathway. J Leukoc Biol. 2002;72:668–76.PubMedGoogle Scholar
  62. 62.
    Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001;104:487–501.CrossRefGoogle Scholar
  63. 63.
    Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science. 2002;296:1634–5.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Zender L, Hutker S, Mundt B, Waltemathe M, Klein C, Trautwein C, Malek NP, et al. NFkappaB-mediated upregulation on bcl-xl restrains of TRAIL-mediated apoptosis in s murine viral hepatitis. J Hepatol. 2005;41:280–8.CrossRefGoogle Scholar
  65. 65.
    Li S, Zhao Y, He X, Kim TH, Kuharsky DK, Rabinowch H, Chen J, et al. Relief of extrinsic pathway inhibition by the Bid-dependent mitochondrial release of Smac in Fas-mediated hepatocyte apoptosis. J Biol Chem. 2002;277:26912–20.CrossRefPubMedGoogle Scholar
  66. 66.
    Bots M, Kolfschoten IG, Bres SA, Rademaker MT, de Roo GM, Kruse M, Franken KL, et al. SPI-CI and SPL6 cooperate in the protection from effector c ELL-mediated cytotoxicity. Blood. 2005;105:1153–61.CrossRefPubMedGoogle Scholar
  67. 67.
    Bird PI. Regulation of pro-apoptotic leucocyte granule serine Proteinases by intracellular serpins. Immunol Cell Biol. 1999;77:47–57.CrossRefPubMedGoogle Scholar
  68. 68.
    Barrie MB, Stout HW, Abougergi MS, Miller BC, Thiele DL. Antiviral cytokines induce hepatic expression of the Granzyme B inhibitors, proteinase inhibitor 9 and serine proteinase inhibitors 6. J Immunol. 2004;172:6453–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Zheng SJ, Wang P, Tsabary G, Chen YH. Critical roles of TRAIL in hepatic inflammation and hepatic. Cell Death J Clin Invest. 2004;113:58–64.CrossRefPubMedGoogle Scholar
  70. 70.
    Zhang HG, Xie J, Xu I, Yang P, Xu X, Sun S, Wang Y, et al. Hepatic DR5 Induces Apoptosis and Limits Adenovirus Gene Therapy Product Expression in the Liver. J Virol. 2002;76:5692–700.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Tay CH, Welsh RM. Distinct organ-dependent mechanisms for the control of murine cytomegalovirus infection natural killer cells. J Virol. 1997;7:267–75.Google Scholar
  72. 72.
    Abougergi MS, Gidner SJ, Spady DK, Miller BC, Thiele DL. Fas and TNFRl, but not cytolytic granule-dependent mechanisms, mediate clearance of murine 1iver adenoviral infection. Hepatology. 2005;41:97–105.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Chirmule N, Moscioni AD, Qian Y, Qian R, Chen Y, Wilson JM. Fas-Fas ligand interactions play a major role in effector functions of cytotoxic T lymphocytes after adenovirus vector-mediated gene transfer. Hum Gene Ther. 1999;10:259–69.CrossRefPubMedGoogle Scholar
  74. 74.
    Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, et al. Lethal effect of the anti-Fas antibody in mice. Nature. 1993;364:806–9.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Chirmule N, Moffent J, Dhagat P, Tazelaar J, Wilson JM. Adenoviral vector-mediated gene therapy in the mouse lung: no role of Fas-Fas ligand interactions for elimination of transgene expression in bronchioepithelial cells. Hum Gene Ther. 1999;10:2839–46.CrossRefPubMedGoogle Scholar
  76. 76.
    Upstream S, Zhangchu Y, Wei H. NK cells on T cells into mouse liver research adenovirus infection aggregation. Chin J Microbiol Immunol. 2002;221(1):45–8.Google Scholar
  77. 77.
    Yi T, Lihuang Z. NKT cells in the role of viral hepatitis. Int J Epidemiol Infect Dis. 2005;32(4):211–4.Google Scholar
  78. 78.
    Mcllroy D, Theodorou I, Ratziu V, Vidaud D, Pellet P, Debre P, Poynard T. Fas promoter polymorphisms correlate with activity grade in hepatitis C patients. Eur J Gastroenterol Hepatol. 2005;17:1081–8.CrossRefGoogle Scholar
  79. 79.
    Dissono HD, Desagher S, Loesch K, Hahne M, Kremer EJ, Jacquet C, et al. Impaired clearance of virus-infected hepatocytes in transgenic mice expressing the hepatitis C virus polyprotein. Gastroenterology. 2004;126:859–72.CrossRefGoogle Scholar
  80. 80.
    Hahn YS. Subversion of immune responses by hepatitis C virus: immunomodulatory strategies beyond evasion. Curr Opin Immunol. 2003;15:443–9.CrossRefPubMedGoogle Scholar
  81. 81.
    Lee SH, Kim YK, Kim CS, Seol SK, Kim J, Cho S, Song YL, et al. E2 of hepatitis C virus inhibits apoptosis. J Immunol. 2005;175:8226–35.CrossRefPubMedGoogle Scholar
  82. 82.
    Liu MF, Chan CW, McGilvray I, Ning Q, et al. Fulminant viral hepatitis: molecular and cellular basis, and clinical implications. Expert Rev Mol Med. 2001;28:1–19.CrossRefGoogle Scholar
  83. 83.
    Zou Y, Chen T, Han M, Wang H, Yan W, Song G, Wu Z, Wang X, Zhu C, Luo X, Ning Q. NKG2D/NKG2D ligand contributes to hepatocyte in virus-induced liver necrosis failure. J Immunol. 2010;184:466–75.CrossRefPubMedGoogle Scholar
  84. 84.
    Norris S, Collins C, Doherty DG, Smith F, McEntee G, Traynor O, Nolan N, Hegarty J, Farrelly O. Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. J Hepatol. 1998;28:84–90.CrossRefPubMedGoogle Scholar
  85. 85.
    Dunn C, Brunetto M, Reynolds G, Christophides T, Kennedy PT, Lampertico P, Das A, Ross Lopes A, Borrow P, Williams K, Humphreys E, Simon Afford, Adams DH, Bertoletti A, Maini MK. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J Exp Med. 2007;204:667–80.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Chen Y, Wei H, Sun R, Dong Z, Zhang J, Tian Z. Increased susceptibility to liver injury in hepatitis B virus transgenic mice involves NKG2D-ligand interaction and natural killer cells. Hepatology. 2007;46(3):706–15.CrossRefPubMedGoogle Scholar
  87. 87.
    Ochi M, Ohdan H, Mitsuta H, Onoe T, Tokita D, Hara H, Ishiyama K, Zhou W, Tanaka Y, Asahara T. Liver NK cells expressing TRAIL in hepatocytes are toxic Against Self MICE. Hepatology. 2004;39(5):1321–31.CrossRefPubMedGoogle Scholar
  88. 88.
    Vyas YM, Maniar H, Dupont B. Visualization of signaling pathways and cortical cytoskeleton in cytolytic and noncytolytic natural killer cell immune synapses. Immunol Rev. 2002;189:161–78.CrossRefPubMedGoogle Scholar
  89. 89.
    Leo A, Wienands J, Baier G, Horejsi V, Schraven B. Adapters in lymphocyte signaling. J Clin Invest. 2002;109:301–9.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Zhang T-T, Cheung SM, Li H, Samuel M, et al. Phosphoinositide 3-kinase-regulated adapters in lymphocyte activation. Immunol Rev. 2009;232:255–72.CrossRefPubMedGoogle Scholar
  91. 91.
    Marshall AJ, Niiro H, Lerner CG, et al. A novel B lymphocyte-associated adaptor protein, Bam32, regulates antigen receptor signaling downstream of phosphatidylinositol 3-kinase. J Exp Med. 2000;191(8):1319–31.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Guse AH, da Silva CP, Berg I, et al. Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature. 1999;398:70–3.CrossRefPubMedGoogle Scholar
  93. 93.
    Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annu Rev Immunol. 2009;27:591–619.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Ning Q, Liu M, Kongkham P, et al. The nucleocapsid protein of murine hepatitis virus type 3 induces transcription of the novel fgl2 prothrombinase gene. J Biol Chem. 1999;274:9930–6.CrossRefPubMedGoogle Scholar
  95. 95.
    Ning Q, Lakatoo S, Liu M, et al. Induction of prothrombinase fgl2 by the nucleocapsid protein of virulent mouse hepatitis virus is dependent on host hepatic nuclear factor-4 alpha. J Biol Chem. 2003;278:15541–9.CrossRefPubMedGoogle Scholar
  96. 96.
    Zhu CL, Sun Y, Luo XP, et al. Novel mfgl2 antisense plasmid inhibits mfgl2 expression and ameliorates MHV -3 induced fulminant hepatitis in Balb/cJ mice. Hum Gene Ther. 2006;17:589–600.CrossRefPubMedGoogle Scholar
  97. 97.
    Bardwell VJ, Treisman R. The POZ domain: a conserved protein-protein interaction motif. Genes Dev. 1994;8:1664–77.CrossRefPubMedGoogle Scholar
  98. 98.
    Contini P, Ghio M, Merlo A, et al. Apoptosis of antigen-specific T lymphocytes upon the engagement of CD8 by soluble HLA class I molecules is Fas ligand/Fas mediated: evidence for the involvement of p56lck, calcium calmodulin kinase II, and Calcium-independent protein kinase C signaling pathways and for NF-kappaB and NF-AT nuclear translocation. J Immunol. 2005;175:7244–54.CrossRefPubMedGoogle Scholar
  99. 99.
    Launay P, Cheng H, Srivatsan S, et al. TRPM4 regulates calcium oscillations after T cell activation. Science. 2004;306:1374–47.CrossRefPubMedGoogle Scholar
  100. 100.
    Kotturi MF, Carlow DA, Lee JC, et al. Identification and functional characterization of voltage-dependent calcium channels in T lymphocytes. J Biol Chem. 2003;278:46949–60.CrossRefPubMedGoogle Scholar
  101. 101.
    Ahluwalia J, Tinker A, Clapp LH, et al. The large-conductance Ca2+-activated K+ channel is essential for innate immunity. Nature. 2004;427:853–8.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Srivastava S, Li Z, Ko K, et al. Histidine phosphorylation of the Potassium Channel KCa3.1 by nucleoside diphosphate kinase B is required for activation of KCa3.1 and CD4 T cells. Mol Cell. 2006;24:665–75.CrossRefPubMedGoogle Scholar
  103. 103.
    Panyi G, Possani LD, Rodriguez de la Vega RC, et al. K+ channel blockers: novel tools to INHIBIT T cell activation leading to specific immunosuppression. Curr Pharm Des. 2006;12:2199–220.CrossRefPubMedGoogle Scholar
  104. 104.
    Zhang ZX, Yang L, Young KJ, Du Temple B, Zhang L. Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nat Med. 2000;6:782–9.CrossRefPubMedGoogle Scholar
  105. 105.
    Matsuzaki G, Takada H, Nomoto K. Escherichia coli infection induces only Gamma Delta fetal Thymus-derived T cells at the infected site. Eur J Immunol. 1999;29(12):3877–86.CrossRefPubMedGoogle Scholar
  106. 106.
    Szymanska B, Rajan AJ, Gao YL, Tronczynska E, Brosnan CF, Selmaj K. Evidence for gammadelta T cells with a restricted Vgamma6 normal junctional region in the central nervous system mouse. J Neuroimmunol. 1999;100(1–2):260–5.CrossRefPubMedGoogle Scholar
  107. 107.
    Sun Lu fruit. γδT cells and their biological significance in immune tolerance. Int J Immunol. 2000;23:77–80.Google Scholar
  108. 108.
    Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology. 8th ed. Philadelphia: Elsevier Company; 2014.Google Scholar
  109. 109.
    Parslow TG, Stites DP, Terr AI, Imboden JB. Medical immunology. 10th ed. New York: McGraw-Hill Company; 2002.Google Scholar
  110. 110.
    Gong FL. Medical immunology. 4th ed: Science Publishing House; 2014.Google Scholar
  111. 111.
    Goldsby RA, Kindt TJ, Osborne BA, Kuby J. Immunology. 5th ed. New York: W.H. Freeman and Company; 2003.Google Scholar
  112. 112.
    Cao XT. Advances in immunity. 2nd ed. Beijing: People’s Medical Publishing House; 2009.Google Scholar
  113. 113.
    Feuerer M, Hill JA, Mathis D, Benoist C. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat Immunol. 2009;10(7):689–95.CrossRefPubMedGoogle Scholar
  114. 114.
    Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol. 2009;27:485–517.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Crotty S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol. 2011;29:621–63.CrossRefPubMedGoogle Scholar
  116. 116.
    Bonneville M, O’Brien RL, Born WK. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol. 2010;10(7):467–78.CrossRefPubMedGoogle Scholar
  117. 117.
    Born WK, Yin Z, Hahn YS, Sun D, O’Brien RL. Analysis of gamma delta T cell functions in the mouse. J Immunol. 2010;184(8):4055–61.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Casetti R, Martino A. The plasticity of gamma delta T cells: innate immunity, antigen presentation and new immunotherapy. Cell Mol Immunol. 2008;5(3):161–70.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Liang TJ, Hepatitis B. The virus and disease. Hepatology. 2009;49(Suppl 5):S13–21.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Liaw YF, Chu CM. Hepatitis B virus infection. Lancet. 2009;373(9663):582–92.CrossRefPubMedGoogle Scholar
  121. 121.
    Di Bisceglie AM. Hepatitis B and hepatocellular carcinoma. Hepatology. 2009;49(5 Suppl):S56–60.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Das A, Maini MK. Innate and adaptive immune responses in hepatitis B virus infection. Dig Dis. 2010;28(1):126–32.CrossRefPubMedGoogle Scholar
  123. 123.
    Bauer T, Sprinzl M, Protzer U. Immune control of hepatitis B virus. Dig Dis. 2011;29(4):423–33.CrossRefPubMedGoogle Scholar
  124. 124.
    Wang FS, Zhang Z. Host immunity influences disease progression and antiviral efficacy in humans infected with hepatitis B virus. Expert Rev Gastroenterol Hepatol. 2009;3(5):499–512.CrossRefPubMedGoogle Scholar
  125. 125.
    Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol. 2005;5(3):215–29.CrossRefPubMedGoogle Scholar
  126. 126.
    Tseng CT, Miskovsky E, Houghton M, Klimpel GR. Characterization of liver T cell receptor gammadelta T cells obtained from individuals chronically infected with hepatitis C virus (HCV): evidence for these T cells playing a role in the liver pathology associated with HCV infection. Hepatology. 2001;33(5):1312–20.CrossRefGoogle Scholar
  127. 127.
    Chen M, Zhang D, Zhen W, Shi Q, Liu Y, Ling N, Peng M, Tang K, Hu P, Hu H, Ren H. Characteristics of circulating T cell receptor gamma-delta T cells from individuals chronically infected with hepatitis B virus (HBV): an association between V(delta)2 subtype and chronic HBV infection. J Infect Dis. 2008;198(11):1643–50.CrossRefPubMedGoogle Scholar
  128. 128.
    Chisari FV, Isogawa M, Wieland SF. Pathogenesis of hepatitis B virus infection. Pathol Biol (Paris). 2010;58(4):258–66.CrossRefGoogle Scholar
  129. 129.
    Dandri M, Locarnini S. New insight in the pathobiology of hepatitis B virus infection. Gut. 2012;61(Suppl 1):i6–17.CrossRefPubMedGoogle Scholar
  130. 130.
    Wu Z, Han M, Chen T, Yan W, Ning Q. Acute liver failure: mechanisms of immune-mediated liver injury. Liver Int. 2010;30(6):782–94.CrossRefPubMedGoogle Scholar
  131. 131.
    Sarin SK, Kumar A, Almeida JA, Chawla YK, Fan ST, Garg H, et al. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific Association for the study of the liver (APASL). Hepatol Int. 2009;3(1):269–82.CrossRefPubMedGoogle Scholar
  132. 132.
    Zhai S, Zhang L, Dang S, Yu Y, Zhao Z, Zhao W, Liu L. The ratio of Th-17 to Treg cells is associated with survival of patients with acute-on-chronic hepatitis B liver failure. Viral Immunol. 2011;24(4):303–10.CrossRefPubMedGoogle Scholar
  133. 133.
    Shi F, Zhang JY, Zeng Z, Tien P, Wang FS. Skewed ratios between CD3(+) T cells and monocytes are associated with poor prognosis in patients with HBV-related acute-on-chronic liver failure. Biochem Biophys Res Commun. 2010;402(1):30–6.CrossRefPubMedGoogle Scholar
  134. 134.
    Zhang JY, Zhang Z, Lin F, Zou ZS, Xu RN, Jin L, Fu JL, Shi F, Shi M, Wang HF, Wang FS. Interleukin-17-producing CD4(+) T cells increase with severity of liver damage in patients with chronic hepatitis B. Hepatology. 2010;51(1):81–91.CrossRefPubMedGoogle Scholar
  135. 135.
    Zhang Z, Zou ZS, Fu JL, Cai L, Jin L, Liu YJ, Wang FS. Severe dendritic cell perturbation is actively involved in the pathogenesis of acute-on-chronic hepatitis B liver failure. J Hepatol. 2008;49(3):396–406.CrossRefPubMedGoogle Scholar
  136. 136.
    Zou Z, Li B, Xu D, Zhang Z, Zhao JM, Zhou G, et al. Imbalanced intrahepatic cytokine expression of interferon-gamma, tumor necrosis factor-alpha, and interleukin-10 in patients with acute-on-chronic liver failure associated with hepatitis B virus infection. J Clin Gastroenterol. 2009;43(2):182–90.CrossRefPubMedGoogle Scholar
  137. 137.
    Chen M, Hu P, Peng H, Zeng W, Shi X, Lei Y, Hu H, Zhang D, Ren H. Enhanced peripheral γδT cells cytotoxicity potential in patients with HBV-associated acute-on-chronic liver failure might contribute to the disease progression. J Clin Immunol. 2012;32(4):877–85.CrossRefPubMedGoogle Scholar
  138. 138.
    Farci P, Diaz G, Chen Z, Govindarajan S, Tice A, Agulto L, Pittaluga S, Boon D, Yu C, Engle RE, Haas M, Simon R, Purcell RH, Zamboni F. B cell gene signature with massive intrahepatic production of antibodies to hepatitis B core antigen in hepatitis B virus-associated acute liver failure. Proc Natl Acad Sci U S A. 2010;107(19):8766–71.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Zhang GL, Xie DY, Ye YN, Lin CS, Zhang XH, Zheng YB, Huang ZL, Peng L, Gao ZL. High level of IL-27 positively correlated with Th17 cells may indicate liver injury in patients infected with HBV. Liver Int. 2014;34(2):266–73.CrossRefPubMedGoogle Scholar
  140. 140.
    Dong X, Gong Y, Zeng H, Hao Y, Wang X, Hou J, Wang J, Li J, Zhu Y, Liu H, Han J, Zhou H, Shen L, Gao T, Zhou T, Yang S, Li S, Chen Y, Meng Q, Li H. Imbalance between circulating CD4+ regulatory T and conventional T lymphocytes in patients with HBV-related acute-on-chronic liver failure. Liver Int. 2013;33(10):1517–26.PubMedGoogle Scholar
  141. 141.
    Arshad MI, Piquet-Pellorce C, L’Helgoualc’h A, Rauch M, Patrat-Delon S, Ezan F, Lucas-Clerc C, Nabti S, Lehuen A, Cubero FJ, Girard JP, Trautwein C, Samson M. TRAIL but not FasL and TNFα, regulates IL-33 expression in murine hepatocytes during acute hepatitis. Hepatology. 2012;56(6):2353–62.CrossRefPubMedGoogle Scholar
  142. 142.
    Sarin SK, Kedarisetty CK, Abbas Z, Amarapurkar D, Bihari C, Chan AC, Chawla YK, KadirDokmeci A, Garg H, Ghazinyan H, Hamid S, Kim DJ, Komolmit P, Lata S, Lee GH, Lesmana LA, Mahtab M, Maiwall R, Moreau R, Ning Q, Pamecha V, Payawal DA, Rastogi A, Rela SRM, Saraya A, Samuel D, Saraswat V, Shah S, Shiha G, Sharma BC, Sharma MK, Sharma K, Butt AS, Tan SS, Vashishtha C, Wani ZA, Yuen M-F, Yokosuka O, the APASL ACLF Working Party. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific Association for the Study of the Liver (APASL) 2014. Hepatol Int. 2014;8:453–71.CrossRefPubMedGoogle Scholar
  143. 143.
    Lee WM, Stravitz RT, Larson AM. Introduction to the revised American Association for the Study of Liver Diseases Position Paper on acute liver failure 2011. Hepatology. 2012;55(3):965–7.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Organization Committee of 13th Asia-Pacific Congress of Clinical Microbiology and Infection. 13th Asia-Pacific Congress of Clinical Microbiology and Infection Consensus Guidelines for diagnosis and treatment of liver failure. Hepatobiliary Pancreat Dis Int. 2013;12(4):346–54.CrossRefGoogle Scholar
  145. 145.
    Olson JC, Kamath PS. Acute-on-chronic liver failure: concept, natural history, and prognosis. Curr Opin Crit Care. 2011;17(2):165–9.CrossRefPubMedGoogle Scholar
  146. 146.
    Moreau R, Jalan R, Gines P, Pavesi M, Angeli P, Cordoba J, Durand F, Gustot T, Saliba F, Domenicali M, Gerbes A, Wendon J, Alessandria C, Laleman W, Zeuzem S, Trebicka J, Bernardi M, Arroyo V, CANONIC Study Investigators of the EASL–CLIF Consortium. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology. 2013;144(7):1426–37.CrossRefPubMedGoogle Scholar
  147. 147.
    Qin N, Zhi C, Yuming W, Guanxin S. Acute exacerbation of chronic hepatitis B: Basic research and clinical management. 1st ed. Wuhan: Huazhong University of Science & Technology Press (HUST Press); 2013.Google Scholar
  148. 148.
    Malý MA, Tomasov P, Hájek P, Blasko P, Hrachovinová I, Salaj P, Veselka J. The role of tissue factor in thrombosis and hemostasis [J]. Physiol Res. 2007;56(6):685–95.PubMedGoogle Scholar
  149. 149.
    Ansell J. Factor Xa or thrombin: is factor Xa a better target? J Thromb Haemost. 2007;5(Suppl 1):60–4.CrossRefPubMedGoogle Scholar
  150. 150.
    Butenas S, Mann KG. Blood coagulation. Biochemistry (Mosc). 2002;67(1):3–12.CrossRefGoogle Scholar
  151. 151.
    Morrissecy JH. Tissue factor: an enzyme cofactor and a true receptor. Thromb Haemost. 2001;86(1):66–74.Google Scholar
  152. 152.
    Sakowicz A, Fendler W, Lelonek M, Gluba A, Pietrucha T. Two polymorphisms of FVII gene and their impact on the risk of myocardial infarction in poles under 45 years of age [J]. Mol Biol (Mosk). 2010;44(2):229–34.CrossRefGoogle Scholar
  153. 153.
    Monroe DM, Hoffman M. What does it take to make the perfect clot? Arterioscler Thromb Vasc Biol. 2006;26(1):41–8.CrossRefPubMedGoogle Scholar
  154. 154.
    Lwaleed BA, Bass PS. Tissue factor pathway inhibitor: structure, biology and involvement in disease. J Pathol. 2006;208(3):327–39.CrossRefPubMedGoogle Scholar
  155. 155.
    Boffa MB, Hamill JD, Maret D, Brown D, Scott ML, Nesheim ME, Koschinsky ML. Acute phase mediators modulate thrombin-activable fibrinolysis inhibitor (TAFI) gene expression in HepG2 cells. J Biol Chem. 2003;278(11):9250–7.CrossRefPubMedGoogle Scholar
  156. 156.
    Hoffman M, Monroe DM. Coagulation 2006: a modern view of hemostasis. Hematol Oncol Clin North Am. 2007;21(1):1–11.CrossRefPubMedGoogle Scholar
  157. 157.
    Esmon CT. The protein C pathway. Chest. 2003;124(3 Suppl):26S–32S.CrossRefPubMedGoogle Scholar
  158. 158.
    Sofi F, Cesari F, Fedi S, Abbate R, Gensini GF, Protein Z. “Light and shade” of a new thrombotic factor. Clin Lab. 2004;50(11–12):647–52.PubMedGoogle Scholar
  159. 159.
    Cesarman-Maus G, Hajjar KA. Molecular mechanisms of fibrinolysis. Br J Haematol. 2005;129(3):307–21.CrossRefPubMedGoogle Scholar
  160. 160.
    Greenberg DL, Davie EW. Blood coagulation factors: their complementary DNAs, genes and expression. In: Colman RW, Hirsh J, Marder VJ, Clowes AW, George JN, editors. Hemostasis and thrombosis: basic principles and clinical practice. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 21–57.Google Scholar
  161. 161.
    Bernal W, Auzinger G, Dhawan A, Wendon J. Acute liver failure. Lancet. 2010;376:190–201.CrossRefGoogle Scholar
  162. 162.
    Kim TY, Kim DJ. Acute-on-chronic liver failure. Clin Mol Hepatol. 2013;19:349–59.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Wang YM, Wang XH. Definition and classification of liver failure. Chinese J Pract Int Med. 2005;25(9):782–4. (in Chinese)Google Scholar
  164. 164.
    Panackel C, Thomas R, Sebastian B, Mathai SK. Recent advances in management of acute liver failure. Indian J Crit Care Med. 2015;19(1):27–33.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Habib M, Roberts LN, Patel RK, Wendon J, Bernal W, Arya R. Evidence of rebalanced coagulation in acute liver injury and acute liver failure as measured by thrombin generation. Liver Int. 2014;34(5):672–8.CrossRefPubMedGoogle Scholar
  166. 166.
    Munoz S, Rajender Reddy K, Lee W. The coagulopathy of acute liver failure and implications for intracranial pressure monitoring. Neurocrit Care. 2008;9(1):103–7.CrossRefPubMedGoogle Scholar
  167. 167.
    Munoz SJ, Stravitz RT, Gabriel DA. Coagulopathy of acute liver failure. Clin Liver Dis. 2009;13(1):95–107.CrossRefPubMedGoogle Scholar
  168. 168.
    Lisman T1, Caldwell SH, Burroughs AK, Northup PG, Senzolo M, Stravitz RT, Tripodi A, Trotter JF, Valla DC, Porte RJ. Coagulation in Liver Disease Study Group. Hemostasis and thrombosis in patients with liver disease: the ups and downs. J Hepatol. 2010;53(2):362–71.CrossRefPubMedGoogle Scholar
  169. 169.
    Stravitz RT, Kramer AH, Davern T, Shaikh AO, Caldwell SH, Mehta RL, Blei AT, Fontana RJ, McGuire BM, Rossaro L, Smith AD, Lee WM. Acute Liver Failure Study Group. Intensive care of patients with acute liver failure: recommendations of the US. Crit Care Med. 2007;35(11):2498–508.CrossRefPubMedGoogle Scholar
  170. 170.
    O’Grady J. Acute liver failure. Postgrad Med J. 2005;8(953):148–54.CrossRefGoogle Scholar
  171. 171.
    Stravitz RT. Critical management decision in patients with acute liver failure. Chest. 2008;134(5):1092–102.CrossRefPubMedGoogle Scholar
  172. 172.
    Auzinger G, Wendon J. Intensive care management of acute liver failure. Curr Opin Crit Care. 2008;14(2):179–88.CrossRefPubMedGoogle Scholar
  173. 173.
    Koyama T, Hall LR, Haser WG, Tonegawa S, Saito H. Structure of a cytotoxic T-lymphocyte-specific gene shows a strong homology to fibrinogen b and g chains. Proc Natl Acad Sci U S A. 1987;84(6):1609–13.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Parr RL, Fung L, Reneker J, Myers-Mason N, Leibowitz JL, Levy G. Association of mouse fibrinogen-like protein with murine hepatitis virus-induced prothrombinase activity. J Virol. 1995;69(8):5033–8.PubMedPubMedCentralGoogle Scholar
  175. 175.
    Chan CW, Chan MW, Liu M, Fung L, Cole EH, Leibowitz JL, Marsden PA, Clark DA, Levy GA. Kinetic analysis of a unique direct prothrombinase, fgl2, and identification of a serine residue critical for the prothrombinase activity [J]. J Immunol. 2002;168(10):5170–7.CrossRefPubMedGoogle Scholar
  176. 176.
    Qureshi ST, Clermont S, Leibowitz J, Fung LS, Levy G, Malo D. Mouse hepatitis virus-3 induced prothrombinase (Fg12) maps to proximal chromosome 5. Genomics. 1995;29(1):307–9.CrossRefPubMedGoogle Scholar
  177. 177.
    Ding JW, Ning Q, Liu MF, Lai A, Leibowitz J, Peltekian KM, Cole EH, Fung LS, Holloway C, Marsden PA, Yeger H, Phillips MJ, Levy GA. Fulminant hepatic failure in murine hepatitis virus strain 3 infection: tissue-specific expression of a novel fgl2 prothrombinase. J Virol. 1997;71(12):9223–30.PubMedPubMedCentralGoogle Scholar
  178. 178.
    Marsden PA, Ning Q, Fung LS, Luo X, Chen Y, Mendicino M, Ghanekar A, Scott JA, Miller T, Chan CW, Chan MW, He W, Gorczynski RM, Grant DR, Clark DA, Phillips MJ, Levy GA. The Fgl2/fibroleukin prothrombinase contributes to immunologically mediated thrombosis in experimental and human viral hepatitis. J Clin Invest. 2003;112(1):58–66.CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Yuwaraj S, Ding J, Liu M, Marsden PA, Levy GA. Genomic characterization, localization, and functional expression of FGL2, the human gene encoding fibroleukin: a novel human procoagulant. Genomics. 2001;71(3):330–8.CrossRefPubMedGoogle Scholar
  180. 180.
    Zhu CL, Yan WM, Zhu F, Zhu YF, Xi D, Tian DY, Levy G, Luo XP, Ning Q. Fibrinogen-like protein 2 fibroleukin expression and its correlation with disease progression in murine hepatitis virus type 3-induced fulminant hepatitis and in patients with severe viral hepatitis B. World J Gastroenterol. 2005;11(44):6936–40.CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Ning Q, Liu M, Kongkham P, Lai MM, Marsden PA, Tseng J, Pereira B, Belyavskyi M, Leibowitz J, Phillips MJ, Levy G. The nucleocapsid protein of murine hepatitis virus type 3 induces transcription of the novel fgl2 prothrombinase gene. J Biol Chem. 1999;274(15):9930–6.CrossRefPubMedGoogle Scholar
  182. 182.
    Ning Q, Lakatoo S, Liu M, Yang W, Wang Z, Phillips MJ, Levy GA. Induction of prothrombinase fgl2 by the nucleocapsid protein of virulent mouse hepatitis virus is dependent on host hepatic nuclear factor-4. J Biol Chem. 2003;278(18):15541–9.CrossRefPubMedGoogle Scholar
  183. 183.
    Han M, Yan W, Guo W, Xi D, Zhou Y, Li W, Gao S, Liu M, Levy G, Luo X, Ning Q. Hepatitis B virus induced HFGl2 transcription is dependent on c-Ets-2 and MAPK signal pathway. J Biol Chem. 2008;283(11):32715–29.CrossRefPubMedGoogle Scholar
  184. 184.
    Kerr R. New insights into haemostasis in liver failure. Blood Coagul Fibrinolysis. 2003;14(Suppl 1):S43–5.CrossRefPubMedGoogle Scholar
  185. 185.
    Elinav E, Ben-Dov I, Hai-Am E, Ackerman Z, Ofran Y. The predictive value of admission and follow up factor V and VII levels in patients with acute hepatitis and coagulopathy. J Hepatol. 2005;42(1):82–6.CrossRefPubMedGoogle Scholar
  186. 186.
    Hollestelle MJ, Geertzen HG, Straatsburg IH, van Gulik TM, van Mourik JA. Factor VIII expression in liver disease. Thromb Haemost. 2004;91(2):267–75.CrossRefPubMedGoogle Scholar
  187. 187.
    Sarafanov AG, Ananyeva NM, Shima M, Saenko EL. Cell surface heparan sulfate proteoglycans participate in factor VIII catabolism mediated by low density lipoprotein receptor-related protein. J Biol Chem. 2001;276(15):11970–9.CrossRefPubMedGoogle Scholar
  188. 188.
    Mueller MM, Bomke B, Seifried E. Fresh frozen plasma in patients with disseminated intravascular coagulation or in patients with liver diseases. Thromb Res. 2002;107(Suppl 1):S9–S17.CrossRefPubMedGoogle Scholar
  189. 189.
    Ferro D, Quintarelli C, Lattuada A, Leo R, Alessandroni M, Mannucci PM, Violi F. High plasma levels of von Willebrand factor as a marker of endothelial perturbation in cirrhosis: relationship to endotoxemia. Hepatology. 1996;23(6):1377–83.CrossRefPubMedGoogle Scholar
  190. 190.
    Baruch Y, Neubauer K, Ritzel A, Wilfling T, Lorf T, Ramadori G. Von Willebrand gene expression in damaged human liver. Hepato-Gastroenterology. 2004;51(57):684–8.PubMedGoogle Scholar
  191. 191.
    Lechner K, Niessner H, Thaler E. Coagulation abnormalities in liver disease. Semin Thromb Haemost. 1977;4(1):40–56.CrossRefGoogle Scholar
  192. 192.
    Francis JL, Armstrong DJ. Fibrinogen-bound sialic acid levels in the dysfibrinogenaemia of liver disease. Haemostasis. 1982;11(4):215–22.PubMedGoogle Scholar
  193. 193.
    Mannucci PM, Vigano S. Deficiencies of protein C, an inhibitor of blood coagulation. Lancet. 1982;2(8296):463–7.CrossRefPubMedGoogle Scholar
  194. 194.
    Primignani M, Martinelli I, Bucciarelli P, Battaglioli T, Reati R, Fabris F, Dell’era A, Pappalardo E, Mannucci PM. Risk factors for thrombophilia in extrahepatic portal vein obstruction. Hepatology. 2005;41(3):603–8.CrossRefPubMedGoogle Scholar
  195. 195.
    Minnema MC, Janssen HL, Niermeijer P, de Man RA. Budd-Chiari syndrome: combination of genetic defects and the use of oral contraceptives leading to hypercoagulability [J]. J Hepatol. 2000;33(3):509–12.CrossRefPubMedGoogle Scholar
  196. 196.
    Bhattacharyya M, Makharia G, Kannan M, Ahmed RP, Gupta PK, Saxena R. Inherited prothrombotic defects in Budd-Chiari syndrome and portal vein thrombosis: a study from North India. Am J Clin Pathol. 2004;121(6):844–7.CrossRefPubMedGoogle Scholar
  197. 197.
    Schipper HG, ten Cate JW. Antithrombin III transfusion in patients with hepatic cirrhosis. Br J Haematol. 1982;52(1):25–33.CrossRefPubMedGoogle Scholar
  198. 198.
    Lisman T, Leebeek F. Hemostatic alterations in liver disease: a review on pathophysiology, clinical consequences, and treatment. Dig Surg. 2007;24(4):250–8.CrossRefPubMedGoogle Scholar
  199. 199.
    Hersch SL, Kunelis T, Francis RB Jr. The pathogenesis of accelerated fibrinolysis in liver cirrhosis: a critical role for tissue plasminogen activator inhibitor. Blood. 1987;69(5):1315–9.PubMedGoogle Scholar
  200. 200.
    Pernambuco JR, Langley PG, Hughes RD, Izumi S, Williams R. Activation of the fibrinolytic system in patients with fulminant liver failure. Hepatology. 1993;18(6):1350–6.CrossRefPubMedGoogle Scholar
  201. 201.
    Wang W, Boffa MB, Bajzar L, Walker JB, Nesheim ME. A study of the mechanism of inhibition of fibrinolysis by activated thrombin-activatable fibrinolysis inhibitor [J]. J Biol Chem. 1998;273(42):27176–81.CrossRefPubMedGoogle Scholar
  202. 202.
    Nesheim M, Bajzar L. The discovery of TAFI. J Thromb Haemost. 2005;3(10):2139–46.CrossRefPubMedGoogle Scholar
  203. 203.
    Aster RH. Pooling of platelets in the spleen: role in the pathogenesis of ‘hypersplenic’ thrombocytopenia. J Clin Invest. 1966;45(5):645–57.CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Goulis J, Chau TN, Jordan S, Mehta AB, Watkinson A, Rolles K, Burroughs AK. Thrombopoietin concentrations are low in patients with cirrhosis and thrombocytopenia and are restored after orthotopic liver transplantation. Gut. 1999;44(5):754–8.CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Kajihara M, Kato S, Okazaki Y, Kawakami Y, Ishii H, Ikeda Y, Kuwana M. A role of autoantibody-mediated platelet destruction in thrombocytopenia in patients with cirrhosis. Hepatology. 2003;37(6):1267–76.CrossRefPubMedGoogle Scholar
  206. 206.
    Ben Ari Z, Osman E, Hutton RA, Burroughs AK. Disseminated intravascular coagulation in liver cirrhosis: fact or fiction? Am J Gastroenterol. 1999;94(10):2977–82.CrossRefPubMedGoogle Scholar
  207. 207.
    Levine RF, Spivak JL, Meagher RC, Sieber F. Effect of ethanol on thrombopoiesis. Br J Haematol. 1986;62(2):345–54.CrossRefPubMedGoogle Scholar
  208. 208.
    Kitano K, Shimodaira S, Ito T, Ichikawa N, Kodaira H, Kohara Y, Ueno M, Tahara T, Kato T, Ishida F, Kiyosawa K. Liver cirrhosis with marked thrombocytopenia and highly elevated serum thrombopoietin levels. Int J Hematol. 1999;70(1):52–5.PubMedGoogle Scholar
  209. 209.
    Escolar G, Cases A, Vinas M, Pino M, Calls J, Cirera I, Ordinas A. Evaluation of acquired platelet dysfunctions in uremic and cirrhotic patients using the platelet function analyzer (PFA-100): influence of hematocrit elevation. Haematologica. 1999;84(7):614–9.PubMedGoogle Scholar
  210. 210.
    Laffi G, Marra F, Gresele P, Romagnoli P, Palermo A, Bartolini O, Simoni A, Orlandi L, Selli ML, Nenci GG. Evidence for a storage pool defect in platelets from cirrhotic patients with defective aggregation. Gastroenterology. 1992;103(2):641–6.CrossRefPubMedGoogle Scholar
  211. 211.
    Laffi G, Marra F, Failli P, Ruggiero M, Cecchi E, Carloni V, Giotti A, Gentilini P. Defective signal transduction in platelets from cirrhotics is associated with increased cyclic nucleotides. Gastroenterology. 1993;105(1):148–56.CrossRefPubMedGoogle Scholar
  212. 212.
    Laffi G, Cominelli F, Ruggiero M, Fedi S, Chiarugi VP, La Villa G, Pinzani M, Gentilini P. Altered platelet function in cirrhosis of the liver: impairment of inositol lipid and arachidonic acid metabolism in response to agonists. Hepatology. 1988;8(6):1620–6.CrossRefPubMedGoogle Scholar
  213. 213.
    Pasche B, Ouimet H, Francis S, Loscalzo J. Structural changes in platelet glycoprotein IIb/IIIa by plasmin: determinants and functional consequences. Blood. 1994;83:404–14.PubMedGoogle Scholar
  214. 214.
    Desai K, Mistry P, Bagget C, Burroughs AK, Bellamy MF, Owen JS. Inhibition of platelet aggregation by abnormal high density lipoprotein particles in plasma from patients with hepatic cirrhosis. Lancet. 1989;1(8640):693–5.CrossRefPubMedGoogle Scholar
  215. 215.
    Turitto VT, Baumgartner HR. Platelet interaction with subendothelium in a perfusion system: physical role of red blood cells. Microvasc Res. 1975;9(3):335–44.CrossRefPubMedGoogle Scholar
  216. 216.
    Cahill PA, Redmond EM, Sitzmann JV. Endothelial dysfunction in cirrhosis and portal hypertension. Pharmacol Ther. 2001;89(3):273–93.CrossRefPubMedGoogle Scholar
  217. 217.
    Lisman T, Bongers TN, Adelmeijer J, Janssen HL, de Maat MP, de Groot PG, Leebeek FW. Elevated levels of von Willebrand factor in cirrhosis support platelet adhesion despite reduced functional capacity. Hepatology. 2006;44(1):53–61.CrossRefPubMedGoogle Scholar
  218. 218.
    Kujovich JL. Hemostatic defects in end stage liver disease. Crit Care Clin. 2005;21(3):563–87.CrossRefPubMedGoogle Scholar
  219. 219.
    Bakker CM, Knot EA, Stibbe J, Wilson JH. Disseminated intravascular coagulation in liver cirrhosis. J Hepatol. 1992;15(3):330–5.CrossRefPubMedGoogle Scholar
  220. 220.
    Kemkes-Matthes B, Bleyl H, Matthes KJ. Coagulation activation in liver diseases. Thromb Res. 1991;64(2):253–61.CrossRefPubMedGoogle Scholar
  221. 221.
    Carr JM. Disseminated intravascular coagulation in cirrhosis. Hepatology. 1989;10(1):103–10.CrossRefPubMedGoogle Scholar
  222. 222.
    Harmon DC, Demirjian Z, Ellman L, Fischer JE. Disseminated intravascular coagulation with the peritoneovenous shunt. Ann Intern Med. 1979;90(5):774–6.CrossRefPubMedGoogle Scholar
  223. 223.
    Gao S, Wang M, Ye H, Guo J, Xi D, Wang Z, Zhu C, Yan W, Luo X, Ning Q. Dual interference with novel genes mfgl2 and mTNFR1 ameliorates murine hepatitis virus type 3-induced fulminant hepatitis in BALB/cJ mice. Hum Gene Ther. 2010;21(8):969–77.CrossRefPubMedGoogle Scholar
  224. 224.
    Xi D, Wang M, Ye H, Luo X, Ning Q. Combined adenovirus-mediated artificial microRNAs targeting mfgl2, mFas, and mTNFR1 protect against fulminant hepatic failure in mice. PLoS One. 2013;8(11):e82330.CrossRefPubMedPubMedCentralGoogle Scholar
  225. 225.
    Zhu C, Sun Y, Luo X, Yan W, Xi D, Ning Q. Novel mfgl2 antisense plasmid inhibits murine fgl2 expression and ameliorates murine hepatitis virus type 3-induced fulminant hepatitis in BALB/cJ Mice. Hum Gene Ther. 2006;17(6):589–600.CrossRefPubMedGoogle Scholar
  226. 226.
    Sarin SK, Kumar A, Almeida JA, Chawla YK, Fan ST, Garg H, de Silva HJ, Hamid SS, Jalan R, Komolmit P, Lau GK, Liu Q, Madan K, Mohamed R, Ning Q, Rahman S, Rastogi A, Riordan SM, Sakhuja P, Samuel D, Shah S, Sharma BC, Sharma P, Takikawa Y, Thapa BR, Wai CT, Yuen MF. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific Association for the study of the liver (APASL). Hepatol Int. 2009;3(1):269–82.CrossRefPubMedGoogle Scholar
  227. 227.
    Borowski M, Furie BC, Bauminger S, Furie B. Prothrombin requires two sequential metal-dependent conformational transitions to bind phospholipid. Conformation-specific antibodies directed against the phospholipid-binding site on prothrombin. J Biol Chem. 1986;261(32):14969–75.PubMedGoogle Scholar
  228. 228.
    Shearer MJ. Vitamin K. Lancet. 1995;345(8944):229–34.CrossRefPubMedGoogle Scholar
  229. 229.
    Pereira SP, Rowbotham D, Fitt S, Shearer MJ, Wendon J, Williams R. Pharmacokinetics and efficacy of oral versus intravenous mixed-micellar phylloquinone (vitamin K1) in severe acute liver disease. J Hepatol. 2005;42(3):365–70.CrossRefPubMedGoogle Scholar
  230. 230.
    Han MLK, Hyzy R. Advances in critical care management of hepatic failure. Crit Care Med. 2006;34(9 Suppl):S225–31.CrossRefPubMedGoogle Scholar
  231. 231.
    Kaul VV, Munoz SJ. Coagulopathy of liver disease. Curr Treat Options Gastroenterol. 2000;3(6):433–8.CrossRefPubMedGoogle Scholar
  232. 232.
    O’Shaughnessy DF, Atterbury C, Bolton Maggs P, Murphy M, Thomas D, Yates S, Williamson LM. British Committee for Standards in Haematology, Blood Transfusion Task Force. Guidelines for the use of fresh-frozen plasma, cryoprecipitate and cryosupernatant. Br J Haematol. 2004;126(1):11–28.CrossRefPubMedGoogle Scholar
  233. 233.
    Grant A, Neuberger J. Guidelines on the use of liver biopsy in clinical practice. British Society of Gastroenterology. Gut. 1999;45(Suppl 4):IV1–IV11.PubMedPubMedCentralGoogle Scholar
  234. 234.
    Mannucci PM. Desmopressin (DDAVP) in the treatment of bleeding disorders: the first twenty years. Haemophilia. 2000;6(Suppl 1):60–7.CrossRefPubMedGoogle Scholar
  235. 235.
    de Franchis R, Arcidiacono PG, Carpinelli L, Andreoni B, Cestari L, Brunati S, Zambelli A, Battaglia G, Mannucci PM. Randomized controlled trial of desmopressin plus terlipressin vs. terlipressin alone for the treatment of acute variceal hemorrhage in cirrhotic patients: a multicenter, double-blind study, new Italian endoscopic club. Hepatology. 1993;18(5):1102–7.CrossRefPubMedGoogle Scholar
  236. 236.
    Wong AY, Irwin MG, Hui TW, Fung SK, Fan ST, Ma ES. Desmopressin does not decrease blood loss and transfusion requirements in patients undergoing hepatectomy. Can J Anaesth. 2003;50(1):14–20.CrossRefPubMedGoogle Scholar
  237. 237.
    Sue M, Caldwell SH, Dickson RC, Macalindong C, Rourk RM, Charles C, Doobay R, Cambridge SL, Barritt AS, McCallum RW. Variation between centers in technique and guidelines for liver biopsy. Liver. 1996;16(4):267–70.CrossRefPubMedGoogle Scholar
  238. 238.
    Gangireddy VG, Kanneganti PC, Sridhar S, Talla S, Coleman T. Management of thrombocytopenia in advanced liver disease. Can J Gastroenterol Hepatol. 2014;28(10):558–64.CrossRefPubMedPubMedCentralGoogle Scholar
  239. 239.
    Hu KQ, Yu AS, Tiyyagura L, Redeker AG, Reynolds TB. Hyperfibrinolytic activity in hospitalized cirrhotic patients in a referral liver unit. Am J Gastroenterol. 2001;96(5):1581–6.CrossRefPubMedGoogle Scholar
  240. 240.
    Kahl BS, Schwartz BS, Mosher DF. Profound imbalance of pro-fibrinolytic and anti-fibrinolytic factors (tissue plasminogen activator and plasminogen activator inhibitor type 1) and severe bleeding diathesis in a patient with cirrhosis: correction by liver transplantation. Blood Coagul Fibrinolysis. 2003;14(8):741–4.CrossRefPubMedGoogle Scholar
  241. 241.
    Hedner U. Dosing with recombinant factor VIIa based on current evidence. Semin Hematol. 2004;41(1 Suppl 1):35–9.CrossRefPubMedGoogle Scholar
  242. 242.
    Ejlersen E, Melsen T, Ingerslev J, Andreasen RB, Vilstrup H. Recombinant activated factor VII (rFVIIa) acutely normalizes prothrombin time in patients with cirrhosis during bleeding from oesophageal varices. Scand J Gastroenterol. 2001;36(10):1081–5.CrossRefPubMedGoogle Scholar
  243. 243.
    O’Connell KA, Wood JJ, Wise RP, Lozier JN, Braun MM. Thromboembolic adverse events after use of recombinant human coagulation factor VIIa. JAMA. 2006;295(3):293–8.CrossRefPubMedGoogle Scholar
  244. 244.
    Lai CL, Ratziu V, Yuen MF, Poynard T. Viral hepatitis B. Lancet. 2003;362(9401):2089–94.CrossRefPubMedGoogle Scholar
  245. 245.
    Guidotti LG, Chisari FV. Immunobiology and pathogenesis of viral hepatitis. Annu Rev Pathol. 2006;1:23–61.CrossRefPubMedGoogle Scholar
  246. 246.
    Xu D, Fu J, Jin L, Zhang H, Zhou C, Zou Z, Zhao JM, Zhang B, Shi M, Ding X, Tang Z, Fu YX, Wang FS. Circulating and liver resident CD4+CD25+ regulatory T cells actively influence the antiviral immune response and disease progression in patients with hepatitis B. J Immunol. 2006;177(1):739–47.CrossRefPubMedGoogle Scholar
  247. 247.
    Hou JL, Lai W, Chinese Society of Hepatology, Chinese Medical Association; Chinese Society of Infectious Diseases, Chinese Medical Association. The guideline of prevention and treatment for chronic hepatitis B: a 2015 update. Zhonghua Gan Zang Bing Za Zhi. 2015;23(12):888–905. (Article in Chinese)PubMedGoogle Scholar
  248. 248.
    European Association for the Study of the Liver. EASL clinical practice guidelines: management of chronic hepatitis B virus infection. J Hepatol. 2012;57(1):167–85.CrossRefGoogle Scholar
  249. 249.
    Sarin SK, Kumar M, Lau GK, Abbas Z, Chan HL, Chen CJ, Chen DS, Chen HL, Chen PJ, Chien RN, Dokmeci AK, Gane E, Hou JL, Jafri W, Jia J, Kim JH, Lai CL, Lee HC, Lim SG, Liu CJ, Locarnini S, Al Mahtab M, Mohamed R, Omata M, Park J, Piratvisuth T, Sharma BC, Sollano J, Wang FS, Wei L, Yuen MF, Zheng SS, Kao JH. Asian-Pacific clinical practice guidelines on the management of hepatitis B: a 2015 update. Hepatol Int. 2016;10(1):1–98.CrossRefPubMedGoogle Scholar
  250. 250.
    Terrault NA, Bzowej NH, Chang KM, Hwang JP, Jonas MM, Murad MH, American Association for the Study of Liver Diseases. AASLD guidelines for treatment of chronic hepatitis B. Hepatology. 2016;63(1):261–83.CrossRefPubMedGoogle Scholar
  251. 251.
    Op den Brouw ML, Binda RS, van Roosmalen MH, Protzer U, Janssen HL, van der Molen RG, Woltman AM. Hepatitis B virus surface antigen impairs myeloid dendritic cell function: a possible immune escape mechanism of hepatitis B virus. Immunology. 2009;126(2):280–9.Google Scholar
  252. 252.
    Lang T, Lo C, Skinner N, Locarnini S, Visvanathan K, Mansell A. The hepatitis B e antigen (HBeAg) targets and suppresses activation of the toll-like receptor signaling pathway. J Hepatol. 2011;55(4):762–9.CrossRefPubMedGoogle Scholar
  253. 253.
    Boni C, Fisicaro P, Valdatta C, Amadei B, Di Vincenzo P, Giuberti T, Laccabue D, Zerbini A, Cavalli A, Missale G, Bertoletti A, Ferrari C. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J Virol. 2007;81(8):4215–25.CrossRefPubMedPubMedCentralGoogle Scholar
  254. 254.
    Honkoop P, de Man RA, Niesters HG, Zondervan PE, Schalm SW. Acute exacerbation of chronic hepatitis B virus infection after withdrawal of lamivudine therapy. Hepatology. 2000;32(3):635–9.CrossRefPubMedGoogle Scholar
  255. 255.
    Liaw YF. Hepatitis flares and hepatitis B e antigen seroconversion: implication in anti-hepatitis B virus therapy. J Gastroenterol Hepatol. 2003;18(3):246–52.CrossRefPubMedGoogle Scholar
  256. 256.
    Papatheodoridis GV, Dimou E, Papadimitropoulos V. Nucleoside analogues for chronic hepatitis B: antiviral efficacy and viral resistance. Am J Gastroenterol. 2002;97(7):1618–28.CrossRefPubMedGoogle Scholar
  257. 257.
    Lim SG, Wai CT, Rajnakova A, Kajiji T, Guan R. Fatal hepatitis B reactivation following discontinuation of nucleoside analogues for chronic hepatitis B. Gut. 2002;51(4):597–9.CrossRefPubMedPubMedCentralGoogle Scholar
  258. 258.
    Jeng WJ, Sheen IS, Chen YC, Hsu CW, Chien RN, Chu CM, Liaw YF. Off-therapy durability of response to entecavir therapy in hepatitis B e antigen-negative chronic hepatitis B patients. Hepatology. 2013;58(6):1888–96.CrossRefPubMedGoogle Scholar
  259. 259.
    Li X, Wang Y, Chen Y. Cellular immune response in patients with chronic hepatitis B virus infection. Microb Pathog. 2014;74:59–62.CrossRefPubMedGoogle Scholar
  260. 260.
    Duan XZ, Zhuang H, Wang M, Li HW, Liu JC, Wang FS. Decreased numbers and impaired function of circulating dendritic cell subsets in patients with chronic hepatitis B infection (R2). J Gastroenterol Hepatol. 2005;20(2):234–42.CrossRefPubMedGoogle Scholar
  261. 261.
    Ma YJ, He M, Han JA, Yang L, Ji XY. A clinical study of HBsAg-activated dendritic cells and cytokine-induced killer cells during the treatment for chronic hepatitis B. Scand J Immunol. 2013;78(4):387–93.CrossRefPubMedGoogle Scholar
  262. 262.
    Sun HH, Zhou DF, Zhou JY. The role of DCs in the immunopathogenesis of chronic HBV infection and the methods of inducing DCs maturation. J Med Virol. 2016;88(1):13–20.CrossRefPubMedGoogle Scholar
  263. 263.
    Tavakoli S, Mederacke I, Herzog-Hauff S, Glebe D, Grün S, Strand D, Urban S, Gehring A, Galle PR, Böcher WO. Peripheral blood dendritic cells are phenotypically and functionally intact in chronic hepatitis B virus (HBV) infection. Clin Exp Immunol. 2008;151(1):61–70.CrossRefPubMedPubMedCentralGoogle Scholar
  264. 264.
    Woltman AM, Op den Brouw ML, Biesta PJ, Shi CC, Janssen HL. Hepatitis B virus lacks immune activating capacity, but actively inhibits plasmacytoid dendritic cell function. PLoS One. 2011;6(1):e15324.Google Scholar
  265. 265.
    Xu Y, Hu Y, Shi B, Zhang X, Wang J, Zhang Z, Shen F, Zhang Q, Sun S, Yuan Z. HBsAg inhibits TLR9-mediated activation and IFN-alpha production in plasmacytoid dendritic cells. Mol Immunol. 2009;46(13):2640–6.CrossRefPubMedGoogle Scholar
  266. 266.
    Martinet J, Dufeu-Duchesne T, Bruder Costa J, Larrat S, Marlu A, Leroy V, Plumas J, Aspord C. Altered functions of plasmacytoid dendritic cells and reduced cytolytic activity of natural killer cells in patients with chronic HBV infection. Gastroenterology. 2012;143(6):1586–1596.e8.CrossRefPubMedGoogle Scholar
  267. 267.
    Untergasser A, Zedler U, Langenkamp A, Hösel M, Quasdorff M, Esser K, Dienes HP, Tappertzhofen B, Kolanus W, Protzer U. Dendritic cells take up viral antigens but do not support the early steps of hepatitis B virus infection. Hepatology. 2006;43(3):539–47.CrossRefPubMedGoogle Scholar
  268. 268.
    Wang K, Fan X, Fan Y, Wang B, Han L, Hou Y. Study on the function of circulating plasmacytoid dendritic cells in the immunoactive phase of patients with chronic genotype B and C HBV infection. J Viral Hepat. 2007;14(4):276–82.CrossRefPubMedGoogle Scholar
  269. 269.
    Li N, Li Q, Qian Z, Zhang Y, Chen M, Shi G. Impaired TLR3/IFN-beta signaling in monocyte-derived dendritic cells from patients with acute-on-chronic hepatitis B liver failure: relevance to the severity of liver damage. Biochem Biophys Res Commun. 2009;390(3):630–5.CrossRefPubMedGoogle Scholar
  270. 270.
    Duan XZ, Wang M, Li HW, Zhuang H, Xu D, Wang FS. Decreased frequency and function of circulating plasmocytoid dendritic cells (pDC) in hepatitis B virus infected humans. J Clin Immunol. 2004;24(6):637–46.CrossRefPubMedGoogle Scholar
  271. 271.
    van der Molen RG, Sprengers D, Biesta PJ, Kusters JG, Janssen HL. Favorable effect of adefovir on the number and functionality of myeloid dendritic cells of patients with chronic HBV. Hepatology. 2006;44(4):907–14.CrossRefPubMedGoogle Scholar
  272. 272.
    Seki S, Habu Y, Kawamura T, Takeda K, Dobashi H, Ohkawa T, Hiraide H. The liver as a crucial organ in the first line of host defense: the roles of Kupffer cells, natural killer (NK) cells and NK1.1 Ag+ T cells in T helper 1 immune responses. Immunol Rev. 2000;174:35–46.CrossRefPubMedGoogle Scholar
  273. 273.
    Kärre K. Natural killer cell recognition of missing self. Nat Immunol. 2008;9(5):477–80.CrossRefPubMedGoogle Scholar
  274. 274.
    Kakimi K, Guidotti LG, Koezuka Y, Chisari FV. Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J Exp Med. 2000;192(7):921–30.CrossRefPubMedPubMedCentralGoogle Scholar
  275. 275.
    Dunn C, Brunetto M, Reynolds G, Christophides T, Kennedy PT, Lampertico P, Das A, Lopes AR, Borrow P, Williams K, Humphreys E, Afford S, Adams DH, Bertoletti A, Maini MK. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J Exp Med. 2007;204(3):667–80.CrossRefPubMedPubMedCentralGoogle Scholar
  276. 276.
    Kakimi K, Lane TE, Wieland S, Asensio VC, Campbell IL, Chisari FV, Guidotti LG. Blocking chemokine responsive to gamma-2/interferon (IFN)-gamma inducible protein and monokine induced by IFN-gamma activity in vivo reduces the pathogenetic but not the antiviral potential of hepatitis B virus-specific cytotoxic T lymphocytes. J Exp Med. 2001;194(12):1755–66.CrossRefPubMedPubMedCentralGoogle Scholar
  277. 277.
    Webster GJ, Reignat S, Maini MK, Whalley SA, Ogg GS, King A, Brown D, Amlot PL, Williams R, Vergani D, Dusheiko GM, Bertoletti A. Incubation phase of acute hepatitis B in man: dynamic of cellular immune mechanisms. Hepatology. 2000;32(5):1117–24.CrossRefPubMedGoogle Scholar
  278. 278.
    Fisicaro P, Valdatta C, Boni C, Massari M, Mori C, Zerbini A, Orlandini A, Sacchelli L, Missale G, Ferrari C. Early kinetics of innate and adaptive immune responses during hepatitis B virus infection. Gut. 2009;58(7):974–82.CrossRefPubMedGoogle Scholar
  279. 279.
    Guidotti LG, Ishikawa T, Hobbs MV, Matzke B, Schreiber R, Chisari FV. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity. 1996;4(1):25–36.CrossRefPubMedGoogle Scholar
  280. 280.
    Oliviero B, Varchetta S, Paudice E, Michelone G, Zaramella M, Mavilio D, De Filippi F, Bruno S, Mondelli MU. Natural killer cell functional dichotomy in chronic hepatitis B and chronic hepatitis C virus infections. Gastroenterology. 2009;137(3):1151–60, 1160.e1–7.Google Scholar
  281. 281.
    Kahraman A, Fingas CD, Syn WK, Gerken G, Canbay A. Role of stress-induced NKG2D ligands in liver diseases. Liver Int. 2012;32(3):370–82.PubMedGoogle Scholar
  282. 282.
    Zhang Z, Zhang S, Zou Z, Shi J, Zhao J, Fan R, Qin E, Li B, Li Z, Xu X, Fu J, Zhang J, Gao B, Tian Z, Wang FS. Hypercytolytic activity of hepatic natural killer cells correlates with liver injury in chronic hepatitis B patients. Hepatology. 2011;53(1):73–85.CrossRefGoogle Scholar
  283. 283.
    Micco L, Peppa D, Loggi E, Schurich A, Jefferson L, Cursaro C, Panno AM, Bernardi M, Brander C, Bihl F, Andreone P, Maini MK. Differential boosting of innate and adaptive antiviral responses during pegylated-interferon-alpha therapy of chronic hepatitis B. J Hepatol. 2013;58(2):225–33.CrossRefPubMedGoogle Scholar
  284. 284.
    Tan AT, Hoang LT, Chin D, Rasmussen E, Lopatin U, Hart S, Bitter H, Chu T, Gruenbaum L, Ravindran P, Zhong H, Gane E, Lim SG, Chow WC, Chen PJ, Petric R, Bertoletti A, Hibberd ML. Reduction of HBV replication prolongs the early immunological response to IFNα therapy. J Hepatol. 2014;60(1):54–61.CrossRefPubMedGoogle Scholar
  285. 285.
    Tjwa ET, van Oord GW, Hegmans JP, Janssen HL, Woltman AM. Viral load reduction improves activation and function of natural killer cells in patients with chronic hepatitis B. J Hepatol. 2011;54(2):209–18.CrossRefPubMedGoogle Scholar
  286. 286.
    Peppa D, Micco L, Javaid A, Kennedy PT, Schurich A, Dunn C, Pallant C, Ellis G, Khanna P, Dusheiko G, Gilson RJ, Maini MK. Blockade of immunosuppressive cytokines restores NK cell antiviral function in chronic hepatitis B virus infection. PLoS Pathog. 2010;6(12):e1001227.CrossRefPubMedPubMedCentralGoogle Scholar
  287. 287.
    Tjwa ET, Zoutendijk R, van Oord GW, Boeijen LL, Reijnders JG, van Campenhout MJ, de Knegt RJ, Janssen HL, Woltman AM, Boonstra A. Similar frequencies, phenotype and activation status of intrahepatic NK cells in chronic HBV patients after long-term treatment with tenofovir disoproxil fumarate (TDF). Antiviral Res. 2016;132:70–5.CrossRefPubMedGoogle Scholar
  288. 288.
    Diao H, He J, Zheng Q, Chen J, Cui G, Wei Y, Ye P, Kohanawa M, Li L. A possible role for NKT-like cells in patients with chronic hepatitis B during telbivudine treatment. Immunol Lett. 2014;160(1):65–71.CrossRefPubMedGoogle Scholar
  289. 289.
    Wu J, Lu M, Meng Z, Trippler M, Broering R, Szczeponek A, Krux F, Dittmer U, Roggendorf M, Gerken G, Schlaak JF. Toll-like receptor-mediated control of HBV replication by nonparenchymal liver cells in mice. Hepatology. 2007;46(6):1769–78.CrossRefPubMedGoogle Scholar
  290. 290.
    Guo H, Jiang D, Ma D, Chang J, Dougherty AM, Cuconati A, Block TM, Guo JT. Activation of pattern recognition receptor-mediated innate immunity inhibits the replication of hepatitis B virus in human hepatocyte-derived cells. J Virol. 2009;83(2):847–58.CrossRefPubMedGoogle Scholar
  291. 291.
    Ma Z, Zhang E, Yang D, Lu M. Contribution of Toll-like receptors to the control of hepatitis B virus infection by initiating antiviral innate responses and promoting specific adaptive immune responses. Cell Mol Immunol. 2015;12(3):273–82.CrossRefPubMedPubMedCentralGoogle Scholar
  292. 292.
    Visvanathan K, Skinner NA, Thompson AJ, Riordan SM, Sozzi V, Edwards R, Rodgers S, Kurtovic J, Chang J, Lewin S, Desmond P, Locarnini S. Regulation of Toll-like receptor-2 expression in chronic hepatitis B by the precore protein. Hepatology. 2007;45(1):102–10.CrossRefPubMedGoogle Scholar
  293. 293.
    Wu J, Meng Z, Jiang M, Pei R, Trippler M, Broering R, Bucchi A, Sowa JP, Dittmer U, Yang D, Roggendorf M, Gerken G, Lu M, Schlaak JF. Hepatitis B virus suppresses toll-like receptor-mediated innate immune responses in murine parenchymal and nonparenchymal liver cells. Hepatology. 2009;49(4):1132–40.CrossRefPubMedGoogle Scholar
  294. 294.
    Huang YW, Lin SC, Wei SC, Hu JT, Chang HY, Huang SH, Chen DS, Chen PJ, Hsu PN, Yang SS, Kao JH. Reduced Toll-like receptor 3 expression in chronic hepatitis B patients and its restoration by interferon therapy. Antivir Ther. 2013;18(7):877–84.CrossRefPubMedGoogle Scholar
  295. 295.
    Huang YW, Hsu CK, Lin SC, Wei SC, Hu JT, Chang HY, Liang CW, Chen DS, Chen PJ, Hsu PN, Yang SS, Kao JH. Reduced toll-like receptor 9 expression on peripheral CD14+ monocytes of chronic hepatitis B patients and its restoration by effective therapy. Antivir Ther. 2014;19(7):637–43.CrossRefPubMedGoogle Scholar
  296. 296.
    Yan W, Wu D, Wang X, Chen T, Lai Q, Zheng Q, Jiang J, Hou J, Han M, Ning Q. Upregulation of NKG2C+ natural killer cells, TLR-2 expression on monocytes and downregulation of regulatory T-cells influence PEG-IFN treatment efficacy in entecavir-suppressed patients with CHB. Antivir Ther. 2015;20(6):591–602.CrossRefPubMedGoogle Scholar
  297. 297.
    Lanford RE, Guerra B, Chavez D, Giavedoni L, Hodara VL, Brasky KM, Fosdick A, Frey CR, Zheng J, Wolfgang G, Halcomb RL, Tumas DB. GS-9620, an oral agonist of Toll-like receptor-7, induces prolonged suppression of hepatitis B virus in chronically infected chimpanzees. Gastroenterology. 2013;144(7):1508–17, 1517.e1–10CrossRefPubMedPubMedCentralGoogle Scholar
  298. 298.
    Steuer HM, Daffis S, Lehar SM, Palazzo A, Tharinger H, Frey C, Pflanz S, Niu C, Chang CY, Jin MQ, Chen VL, Delaney WE, Peiser L, Fletcher SP, Nguyen MH. Functional activation of NK and CD8+ T cells in vitro by the toll-like receptor 7 agonist GS-9620. Hepatology. 2015;62:1187A.CrossRefGoogle Scholar
  299. 299.
    Lu X, Xu Q, Bu X, Ma X, Zhang F, Deng Q, Zhang Y, Ding J. Relationship between expression of toll-like receptors 2/4 in dendritic cells and chronic hepatitis B virus infection. Int J Clin Exp Pathol. 2014;7(9):6048–55.PubMedPubMedCentralGoogle Scholar
  300. 300.
    Li M, Sun R, Xu L, Yin W, Chen Y, Zheng X, Lian Z, Wei H, Tian Z. Kupffer cells support hepatitis B virus-mediated CD8+ T cell exhaustion via hepatitis B core antigen-TLR2 interactions in mice. J Immunol. 2015;195(7):3100–9.CrossRefPubMedGoogle Scholar
  301. 301.
    Chen J, Wang XM, Wu XJ, Wang Y, Zhao H, Shen B, Wang GQ. Intrahepatic levels of PD-1/PD-L correlate with liver inflammation in chronic hepatitis B. Inflamm Res. 2011;60(1):47–53.CrossRefPubMedGoogle Scholar
  302. 302.
    Jiang M, Broering R, Trippler M, Poggenpohl L, Fiedler M, Gerken G, Lu M, Schlaak JF. Toll-like receptor-mediated immune responses are attenuated in the presence of high levels of hepatitis B virus surface antigen. J Viral Hepat. 2014;21(12):860–72.CrossRefPubMedGoogle Scholar
  303. 303.
    Chisari FV, Ferrari C. Hepatitis B virus immunopathogenesis. Annu Rev Immunol. 1995;13:29–60.CrossRefPubMedGoogle Scholar
  304. 304.
    Guidotti LG, Matzke B, Schaller H, Chisari FV. High-level hepatitis B virus replication in transgenic mice. J Virol. 1995;69(10):6158–69.PubMedPubMedCentralGoogle Scholar
  305. 305.
    Liu XY, Shi F, Zhao H, Wang HF. Research of PD-1 expression in CD8+ T cell of peripheral blood with HBV-associated acute-on-chronic liver failure. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2010;24(2):125–7. [Article in Chinese]PubMedGoogle Scholar
  306. 306.
    Peng G, Li S, Wu W, Tan X, Chen Y, Chen Z. PD-1 upregulation is associated with HBV-specific T cell dysfunction in chronic hepatitis B patients. Mol Immunol. 2008;45(4):963–70.CrossRefPubMedGoogle Scholar
  307. 307.
    Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439(7077):682–7.CrossRefPubMedPubMedCentralGoogle Scholar
  308. 308.
    Phillips S, Chokshi S, Riva A, Evans A, Williams R, Naoumov NV. CD8(+) T cell control of hepatitis B virus replication: direct comparison between cytolytic and noncytolytic functions. J Immunol. 2010;184(1):287–95.CrossRefPubMedGoogle Scholar
  309. 309.
    Guidotti LG, Rochford R, Chung J, Shapiro M, Purcell R, Chisari FV. Viral clearance without destruction of infected cells during acute HBV infection. Science. 1999;284(5415):825–9.CrossRefPubMedGoogle Scholar
  310. 310.
    Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. Control of cccDNA function in hepatitis B virus infection. J Hepatol. 2009;51(3):581–92.CrossRefPubMedGoogle Scholar
  311. 311.
    Bauer T, Sprinzl M, Protzer U. Immune control of hepatitis B virus. Dig Dis. 2011;29(4):423e33.CrossRefGoogle Scholar
  312. 312.
    Zhang Z, Zhang JY, Wang LF, Wang FS. Immunopathogenesis and prognostic immune markers of chronic hepatitis B virus infection. J Gastroenterol Hepatol. 2012;27(2):223–30.CrossRefPubMedGoogle Scholar
  313. 313.
    Webster GJ, Reignat S, Brown D, Ogg GS, Jones L, Seneviratne SL, Williams R, Dusheiko G, Bertoletti A. Longitudinal analysis of CD8+ T cells specific for structural and nonstructural hepatitis B virus proteins in patients with chronic hepatitis B: implications for immunotherapy. J Virol. 2004;78(11):5707–19.CrossRefPubMedPubMedCentralGoogle Scholar
  314. 314.
    Maini MK, Boni C, Lee CK, Larrubia JR, Reignat S, Ogg GS, King AS, Herberg J, Gilson R, Alisa A, Williams R, Vergani D, Naoumov NV, Ferrari C, Bertoletti A. The role of virus-specific CD8(+) cells in liver damage and viral control during persistent hepatitis B virus infection. J Exp Med. 2000;191(8):1269–80.CrossRefPubMedPubMedCentralGoogle Scholar
  315. 315.
    Evans A, Riva A, Cooksley H, Phillips S, Puranik S, Nathwani A, Brett S, Chokshi S, Naoumov NV. Programmed death 1 expression during antiviral treatment of chronic hepatitis B: Impact of hepatitis B e-antigen seroconversion. Hepatology. 2008;48(3):759–69.CrossRefPubMedGoogle Scholar
  316. 316.
    Chen Y, Li X, Ye B, Yang X, Wu W, Chen B, Pan X, Cao H, Li L. Effect of telbivudine therapy on the cellular immune response in chronic hepatitis B. Antiviral Res. 2011;91(1):23–31.CrossRefPubMedGoogle Scholar
  317. 317.
    Li Y, Ma S, Tang L, Li Y, Wang W, Huang X, Lai Q, Zhang M, Sun J, Li CK, Abbott WG, Naoumov NV, Zhang Y, Hou J. Circulating chemokine (C-X-C Motif) receptor 5(+) CD4(+) T cells benefit hepatitis B e antigen seroconversion through IL-21 in patients with chronic hepatitis B virus infection. Hepatology. 2013;58(4):1277–86.CrossRefPubMedGoogle Scholar
  318. 318.
    Boni C, Laccabue D, Lampertico P, Giuberti T, Viganò M, Schivazappa S, Alfieri A, Pesci M, Gaeta GB, Brancaccio G, Colombo M, Missale G, Ferrari C. Restored function of HBV-specific T cells after long-term effective therapy with nucleos(t)ide analogues. Gastroenterology. 2012;143(4):963–73. e9CrossRefPubMedGoogle Scholar
  319. 319.
    Tan AT, Koh S, Goh W, Zhe HY, Gehring AJ, Lim SG, Bertoletti A. A longitudinal analysis of innate and adaptive immune profile during hepatic flares in chronic hepatitis B. J Hepatol. 2010;52(3):330–9.CrossRefPubMedGoogle Scholar
  320. 320.
    Boni C, Penna A, Bertoletti A, Lamonaca V, Rapti I, Missale G, Pilli M, Urbani S, Cavalli A, Cerioni S, Panebianco R, Jenkins J, Ferrari C. Transient restoration of anti-viral T cell responses induced by lamivudine therapy in chronic hepatitis B. J Hepatol. 2003;39(4):595–605.CrossRefPubMedGoogle Scholar
  321. 321.
    Bertoletti A, Ferrari C. Innate and adaptive immune responses in chronic hepatitis B virus infections: towards restoration of immune control of viral infection. Gut. 2012;61(12):1754–64.CrossRefPubMedGoogle Scholar
  322. 322.
    Vandepapelière P, Lau GK, Leroux-Roels G, Horsmans Y, Gane E, Tawandee T, Merican MI, Win KM, Trepo C, Cooksley G, Wettendorff M, Ferrari C. Therapeutic HBV Vaccine Group of Investigators. Therapeutic vaccination of chronic hepatitis B patients with virus suppression by antiviral therapy: a randomized, controlled study of co-administration of HBsAg/AS02 candidate vaccine and lamivudine. Vaccine. 2007;25(51):8585–97.CrossRefPubMedGoogle Scholar
  323. 323.
    Rigopoulou EI, Suri D, Chokshi S, Mullerova I, Rice S, Tedder RS, Williams R, Naoumov NV. Lamivudine plus interleukin-12 combination therapy in chronic hepatitis B: antiviral and immunological activity. Hepatology. 2005;42(5):1028–36.CrossRefPubMedGoogle Scholar
  324. 324.
    Penna A, Laccabue D, Libri I, Giuberti T, Schivazappa S, Alfieri A, Mori C, Canetti D, Lampertico P, Viganò M, Colombo M, Loggi E, Missale G, Ferrari C. Peginterferon-α does not improve early peripheral blood HBV-specific T-cell responses in HBeAg-negative chronic hepatitis. J Hepatol. 2012;56(6):1239–46.CrossRefPubMedGoogle Scholar
  325. 325.
    Sprengers D, Stoop JN, Binda RS, Kusters JG, Haagmans BL, Carotenuto P, Artsen A, van der Molen RG, Janssen HL. Induction of regulatory T-cells and interleukin-10-producing cells in non-responders to pegylated interferon-alpha therapy for chronic hepatitis B. Antivir Ther. 2007;12(7):1087–96.PubMedGoogle Scholar
  326. 326.
    Carotenuto P, Artsen A, Niesters HG, Osterhaus AD, Pontesilli O. In vitro use of autologous dendritic cells improves detection of T cell responses to hepatitis B virus (HBV) antigens. J Med Virol. 2009;81(2):332–9.CrossRefPubMedGoogle Scholar
  327. 327.
    Rossol S, Marinos G, Carucci P, Singer MV, Williams R, Naoumov NV. Interleukin-12 induction of Th1 cytokines is important for viral clearance in chronic hepatitis B. J Clin Invest. 1997;99(12):3025–33.CrossRefPubMedPubMedCentralGoogle Scholar
  328. 328.
    Rehermann B, Lau D, Hoofnagle JH, Chisari FV. Cytotoxic T lymphocyte responsiveness after resolution of chronic hepatitis B virus infection. J Clin Invest. 1996;97(7):1655–65.CrossRefPubMedPubMedCentralGoogle Scholar
  329. 329.
    Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22:531–62.CrossRefGoogle Scholar
  330. 330.
    Jiang H, Chess L. An integrated view of suppressor T cell subsets in immunoregulation. J Clin Invest. 2004;114(9):1198–208.CrossRefPubMedPubMedCentralGoogle Scholar
  331. 331.
    Piccirillo CA, Thornton AM. Cornerstone of peripheral tolerance: naturally occurring CD4+CD25+ regulatory T cells. Trends Immunol. 2004;25(7):374–80.CrossRefPubMedGoogle Scholar
  332. 332.
    Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008;8(7):523–32.CrossRefPubMedPubMedCentralGoogle Scholar
  333. 333.
    Stoop JN, van der Molen RG, Baan CC, van der Laan LJ, Kuipers EJ, Kusters JG, Janssen HL. Regulatory T cells contribute to the impaired immune response in patients with chronic hepatitis B virus infection. Hepatology. 2005;41(4):771–8.CrossRefPubMedGoogle Scholar
  334. 334.
    Li X, Chen Y, Ma Z, Ye B, Wu W, Li L. Effect of regulatory T cells and adherent cells on the expansion of HBcAg-specific CD8+ T cells in patients with chronic hepatitis B virus infection. Cell Immunol. 2010;264(1):42–6.CrossRefPubMedGoogle Scholar
  335. 335.
    Ma H, Zhang HH, Wei L. Frequency of T-cell FoxP3+ Treg and CD4+/CD8+ PD-1 expression is related to HBeAg seroconversion in hepatitis B patients on pegylated interferon. Chin Med J (Engl). 2013;126(2):267–73.Google Scholar
  336. 336.
    Yang G, Liu A, Xie Q, Guo TB, Wan B, Zhou B, Zhang JZ. Association of CD4+CD25+Foxp3+ regulatory T cells with chronic activity and viral clearance in patients with hepatitis B. Int Immunol. 2007;19(2):133–40.CrossRefPubMedGoogle Scholar
  337. 337.
    Stoop JN, van der Molen RG, Kuipers EJ, Kusters JG, Janssen HL. Inhibition of viral replication reduces regulatory T cells and enhances the antiviral immune response in chronic hepatitis B. Virology. 2007;361(1):141–8.CrossRefPubMedGoogle Scholar
  338. 338.
    Feng IC, Koay LB, Sheu MJ, Kuo HT, Sun CS, Lee C, Chuang WL, Liao SK, Wang SL, Tang LY, Cheng CJ, Tsai SL. HBcAg-specific CD4+CD25+ regulatory T cells modulate immune tolerance and acute exacerbation on the natural history of chronic hepatitis B virus infection. J Biomed Sci. 2007;14(1):43–57.CrossRefPubMedGoogle Scholar
  339. 339.
    Kondo Y, Kobayashi K, Ueno Y, Shiina M, Niitsuma H, Kanno N, Kobayashi T, Shimosegawa T. Mechanism of T cell hyporesponsiveness to HBcAg is associated with regulatory T cells in chronic hepatitis B. World J Gastroenterol. 2006;12(27):4310–7.CrossRefPubMedPubMedCentralGoogle Scholar
  340. 340.
    Koay LB, Feng IC, Sheu MJ, Kuo HT, Lin CY, Chen JJ, Wang SL, Tang LY, Tsai SL. Hepatitis B virus (HBV) core antigen-specific regulatory T cells confer sustained remission to anti-HBV therapy in chronic hepatitis B with acute exacerbation. Hum Immunol. 2011;72(9):687–98.CrossRefPubMedGoogle Scholar
  341. 341.
    Zhang Y, Cobleigh MA, Lian JQ, Huang CX, Booth CJ, Bai XF, Robek MD. A proinflammatory role for interleukin-22 in the immune response to hepatitis B virus. Gastroenterology. 2011;141(5):1897–906.CrossRefPubMedPubMedCentralGoogle Scholar
  342. 342.
    Niu Y, Liu H, Yin D, Yi R, Chen T, Xue H, Zhang S, Lin S, Zhao Y. The balance between intrahepatic IL-17(+) T cells and Foxp3(+) regulatory T cells plays an important role in HBV-related end-stage liver disease. BMC Immunol. 2011;12:47.CrossRefPubMedPubMedCentralGoogle Scholar
  343. 343.
    Wang ML, Zhou QL, Chen EQ, Du LY, Yan LB, Bai L, He M, Tang H. Low ratio of Treg to Th17 cells after 36 weeks of telbivudine therapy predict HBeAg seroconversion. Viral Immunol. 2016;29(6):332–42.CrossRefPubMedGoogle Scholar
  344. 344.
    Zhang JY, Song CH, Shi F, Zhang Z, Fu JL, Wang FS. Decreased ratio of Treg cells to Th17 cells correlates with HBV DNA suppression in chronic hepatitis B patients undergoing entecavir treatment. PLoS One. 2010;5(11):e13869.CrossRefPubMedPubMedCentralGoogle Scholar
  345. 345.
    Feng J, Lu L, Hua C, Qin L, Zhao P, Wang J, Wang Y, Li W, Shi X, Jiang Y. High frequency of CD4+ CXCR5+ TFH cells in patients with immune-active chronic hepatitis B. PLoS One. 2011;6(7):e21698.CrossRefPubMedPubMedCentralGoogle Scholar
  346. 346.
    Gimson AE, Tedder RS, White YS, Eddleston AL, Williams R. Serological markers in fulminant hepatitis B. Gut. 1983;24(7):615–7.CrossRefPubMedPubMedCentralGoogle Scholar
  347. 347.
    Trepo CG, Robert D, Motin J, Trepo D, Sepetjian M, Prince AM. Hepatitis B antigen (HBSAg) and/or antibodies (anti-HBS and anti-HBC) in fulminant hepatitis: pathogenic and prognostic significance. Gut. 1976;17(1):10–3.CrossRefPubMedPubMedCentralGoogle Scholar
  348. 348.
    Lin FC, Young HA. Interferons: Success in anti-viral immunotherapy. Cytokine Growth Factor Rev. 2014;25(4):369–76.CrossRefPubMedPubMedCentralGoogle Scholar
  349. 349.
    Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature. 1996;383(6603):787–93.CrossRefPubMedGoogle Scholar
  350. 350.
    Katze MG, He Y, Gale M Jr. Viruses and interferon: a fight for supremacy. Nat Rev Immunol. 2002;2(9):675–87.CrossRefPubMedGoogle Scholar
  351. 351.
    Guidotti LG, Morris A, Mendez H, Koch R, Silverman RH, Williams BR, Chisari FV. Interferon-regulated pathways that control hepatitis B virus replication in transgenic mice. J Virol. 2002;76(6):2617–21.CrossRefPubMedPubMedCentralGoogle Scholar
  352. 352.
    Belloni L, Allweiss L, Guerrieri F, Pediconi N, Volz T, Pollicino T, Petersen J, Raimondo G, Dandri M, Levrero M. IFN-α inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. J Clin Invest. 2012;122(2):529–37.CrossRefPubMedPubMedCentralGoogle Scholar
  353. 353.
    Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev. 2001;14(4):778–809.CrossRefPubMedPubMedCentralGoogle Scholar
  354. 354.
    Lucifora J, Xia Y, Reisinger F, Zhang K, Stadler D, Cheng X, Sprinzl MF, Koppensteiner H, Makowska Z, Volz T, Remouchamps C, Chou WM, Thasler WE, Hüser N, Durantel D, Liang TJ, Münk C, Heim MH, Browning JL, Dejardin E, Dandri M, Schindler M, Heikenwalder M, Protzer U. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science. 2014;343(6176):1221–8.CrossRefPubMedPubMedCentralGoogle Scholar
  355. 355.
    Pei RJ, Chen XW, Lu MJ. Control of hepatitis B virus replication by interferons and Toll-like receptor signaling pathways. World J Gastroenterol. 2014;20(33):11618–29.CrossRefPubMedPubMedCentralGoogle Scholar
  356. 356.
    Cooksley H, Chokshi S, Maayan Y, Wedemeyer H, Andreone P, Gilson R, Warnes T, Paganin S, Zoulim F, Frederick D, Neumann AU, Brosgart CL, Naoumov NV. Hepatitis B virus e antigen loss during adefovir dipivoxil therapy is associated with enhanced virus-specific CD4+ T-cell reactivity. Antimicrob Agents Chemother. 2008;52(1):312–20.CrossRefPubMedGoogle Scholar
  357. 357.
    Jiang Y, Li W, Yu L, Liu J, Xin G, Yan H, Sun P, Zhang H, Xu D, Niu J. Enhancing the antihepatitis B virus immune response by adefovir dipivoxil and entecavir therapies. Cell Mol Immunol. 2011;8(1):75–82.CrossRefPubMedGoogle Scholar
  358. 358.
    Zou Z, Li B, Xu D, Zhang Z, Zhao JM, Zhou G, Sun Y, Huang L, Fu J, Yang Y, Jin L, Zhang W, Zhao J, Sun Y, Xin S, Wang FS. Imbalanced intrahepatic cytokine expression of interferon-gamma, tumor necrosis factor-alpha, and interleukin-10 in patients with acute-on-chronic liver failure associated with hepatitis B virus infection. J Clin Gastroenterol. 2009;43(2):182–90.CrossRefPubMedGoogle Scholar
  359. 359.
    Bertoletti A, Ferrari C. Innate and adaptive immune responses in chronic hepatitis B virus infections: towards restoration of immune control of viral infection. Postgrad Med J. 2013;89(1051):294–304.CrossRefPubMedGoogle Scholar
  360. 360.
    Puro R, Schneider RJ. Tumor necrosis factor activates a conserved innate antiviral response to hepatitis B virus that destabilizes nucleocapsids and reduces nuclear viral DNA. J Virol. 2007;81(14):7351–62.CrossRefPubMedPubMedCentralGoogle Scholar
  361. 361.
    Chyuan IT, Tsai HF, Tzeng HT, Sung CC, Wu CS, Chen PJ, Hsu PN. Tumor necrosis factor-alpha blockage therapy impairs hepatitis B viral clearance and enhances T-cell exhaustion in a mouse model. Cell Mol Immunol. 2015;12(3):317–25.CrossRefPubMedPubMedCentralGoogle Scholar
  362. 362.
    Xia Y, Stadler D, Lucifora J, Reisinger F, Webb D, Hösel M, Michler T, Wisskirchen K, Cheng X, Zhang K, Chou WM, Wettengel JM, Malo A, Bohne F, Hoffmann D, Eyer F, Thimme R, Falk CS, Thasler WE, Heikenwalder M, Protzer U. Interferon-γ and tumor necrosis factor-α produced by T cells reduce the HBV persistence form, cccDNA, without cytolysis. Gastroenterology. 2016;150(1):194–205.CrossRefGoogle Scholar
  363. 363.
    Lee YH, Bae SC, Song GG. Hepatitis B virus (HBV) reactivation in rheumatic patients with hepatitis core antigen (HBV occult carriers) undergoing anti-tumor necrosis factor therapy. Clin Exp Rheumatol. 2013;31(1):118–21.PubMedGoogle Scholar
  364. 364.
    Nagaki M, Iwai H, Naiki T, Ohnishi H, Muto Y, Moriwaki H. High levels of serum interleukin-10 and tumor necrosis factor-alpha are associated with fatality in fulminant hepatitis. J Infect Dis. 2000;182(4):1103–8.CrossRefPubMedGoogle Scholar
  365. 365.
    Bouezzedine F, Fardel O, Gripon P. Interleukin 6 inhibits HBV entry through NTCP down regulation. Virology. 2015;481:34–42.CrossRefPubMedGoogle Scholar
  366. 366.
    Hösel M, Quasdorff M, Wiegmann K, Webb D, Zedler U, Broxtermann M, Tedjokusumo R, Esser K, Arzberger S, Kirschning CJ, Langenkamp A, Falk C, Büning H, Rose-John S, Protzer U. Not interferon, but interleukin-6 controls early gene expression in hepatitis B virus infection. Hepatology. 2009;50(6):1773–82.CrossRefPubMedGoogle Scholar
  367. 367.
    Kakumu S, Shinagawa T, Ishikawa T, Yoshioka K, Wakita T, Ito Y, Takayanagi M, Ida N. Serum interleukin 6 levels in patients with chronic hepatitis B. Am J Gastroenterol. 1991;86(12):1804–8.PubMedGoogle Scholar
  368. 368.
    Pan CJ, Wu HL, Kuo SF, Kao JH, Tseng TC, Liu CH, Chen PJ, Liu CJ, Chen DS. Serum interleukin 6 level correlates with outcomes of acute exacerbation of chronic hepatitis B. Hepatol Int. 2012;6(3):591–7.CrossRefPubMedGoogle Scholar
  369. 369.
    Levings MK, Sangregorio R, Galbiati F, Squadrone S, de Waal Malefyt R, Roncarolo MG. IFN-alpha and IL-10 induce the differentiation of human type 1 T regulatory cells. J Immunol. 2001;166(9):5530–9.CrossRefPubMedGoogle Scholar
  370. 370.
    Dunn C, Peppa D, Khanna P, Nebbia G, Jones M, Brendish N, Lascar RM, Brown D, Gilson RJ, Tedder RJ, Dusheiko GM, Jacobs M, Klenerman P, Maini MK. Temporal analysis of early immune responses in patients with acute hepatitis B virus infection. Gastroenterology. 2009;137(4):1289–300.CrossRefPubMedGoogle Scholar
  371. 371.
    Gong Y, Zhao C, Zhao P, Wang M, Zhou G, Han F, Cui Y, Qian J, Zhang H, Xiong H, Sheng J, Jiang T. Role of IL-10-producing regulatory B cells in chronic hepatitis B virus infection. Dig Dis Sci. 2015;60(5):1308–14.CrossRefPubMedGoogle Scholar
  372. 372.
    Berry PA, Antoniades CG, Hussain MJ, McPhail MJ, Bernal W, Vergani D, Wendon JA. Admission levels and early changes in serum interleukin-10 are predictive of poor outcome in acute liver failure and decompensated cirrhosis. Liver Int. 2010;30(5):733–40.CrossRefPubMedGoogle Scholar
  373. 373.
    Das A, Ellis G, Pallant C, Lopes AR, Khanna P, Peppa D, Chen A, Blair P, Dusheiko G, Gill U, Kennedy PT, Brunetto M, Lampertico P, Mauri C, Maini MK. IL-10-producing regulatory B cells in the pathogenesis of chronic hepatitis B virus infection. J Immunol. 2012;189(8):3925–35.CrossRefPubMedPubMedCentralGoogle Scholar
  374. 374.
    Besnard AG, Sabat R, Dumoutier L, Renauld JC, Willart M, Lambrecht B, Teixeira MM, Charron S, Fick L, Erard F, Warszawska K, Wolk K, Quesniaux V, Ryffel B, Togbe D. Dual Role of IL-22 in allergic airway inflammation and its cross-talk with IL-17A. Am J Respir Crit Care Med. 2011;183(9):1153–63.CrossRefPubMedGoogle Scholar
  375. 375.
    Ye Y, Xie X, Yu J, Zhou L, Xie H, Jiang G, Yu X, Zhang W, Wu J, Zheng S. Involvement of Th17 and Th1 effector responses in patients with Hepatitis B. J Clin Immunol. 2010;30(4):546–55.CrossRefPubMedGoogle Scholar
  376. 376.
    Qi ZX, Wang LY, Fan YC, Zhang JJ, Li T, Wang K. Increased peripheral RORα and RORγt mRNA expression is associated with acute-on-chronic hepatitis B liver failure. J Viral Hepat. 2012;19(11):811–22.CrossRefPubMedGoogle Scholar
  377. 377.
    Wu W, Li J, Chen F, Zhu H, Peng G, Chen Z. Circulating Th17 cells frequency is associated with the disease progression in HBV infected patients. J Gastroenterol Hepatol. 2010;25(4):750–7.CrossRefPubMedGoogle Scholar
  378. 378.
    Jegaskanda S, Ahn SH, Skinner N, Thompson AJ, Ngyuen T, Holmes J, De Rose R, Navis M, Winnall WR, Kramski M, Bernardi G, Bayliss J, Colledge D, Sozzi V, Visvanathan K, Locarnini SA, Kent SJ, Revill PA. Downregulation of interleukin-18-mediated cell signaling and interferon gamma expression by the hepatitis B virus e antigen. J Virol. 2014;88(18):10412–20.CrossRefPubMedPubMedCentralGoogle Scholar
  379. 379.
    Giedraitis V, He B, Huang WX, Hillert J. Cloning and mutation analysis of the human IL-18 promoter: a possible role of polymorphisms in expression regulation. J Neuroimmunol. 2001;112(1-2):146–52.CrossRefPubMedGoogle Scholar
  380. 380.
    Hirankarn N, Manonom C, Tangkijvanich P, Poovorawan Y. Association of interleukin-18 gene polymorphism (-607A/A genotype) with susceptibility to chronic hepatitis B virus infection. Tissue Antigens. 2007;70(2):160–3.CrossRefPubMedGoogle Scholar
  381. 381.
    Zhang PA, Wu JM, Li Y, Yang XS. Association of polymorphisms of interleukin-18 gene promoter region with chronic hepatitis B in Chinese Han population. World J Gastroenterol. 2005;11(11):1594–8.CrossRefPubMedPubMedCentralGoogle Scholar
  382. 382.
    Li Y, Tang L, Hou J. Role of interleukin-21 in HBV infection: friend or foe? Cell Mol Immunol. 2015;12(3):303–8.CrossRefPubMedGoogle Scholar
  383. 383.
    Li HJ, Kang FB, Li BS, Yang XY, Zhang YG, Sun DX. Interleukin-21 inhibits HBV replication in vitro. Antivir Ther. 2015;20(6):583–90.CrossRefPubMedGoogle Scholar
  384. 384.
    Xiang XG, Xie Q. IL-35: a potential therapeutic target for controlling hepatitis B virus infection. J Dig Dis. 2015;16(1):1–6.CrossRefPubMedGoogle Scholar
  385. 385.
    Hu X, Ma S, Huang X, Jiang X, Zhu X, Gao H, Xu M, Sun J, Abbott WG, Hou J. Interleukin-21 is upregulated in hepatitis B-related acute-on-chronic liver failure and associated with severity of liver disease. J Viral Hepat. 2011;18(7):458–67.CrossRefPubMedGoogle Scholar
  386. 386.
    Ho CH, Chien RN, Cheng PN, Liu CK, Su CS, Wu IC, Liu WC, Chen SH, Chang TT. Association of serum IgG N-glycome and transforming growth factor-β1 with hepatitis B virus e antigen seroconversion during entecavir therapy. Antiviral Res. 2014;111:121–8.CrossRefPubMedGoogle Scholar
  387. 387.
    Weng HL, Liu Y, Chen JL, Huang T, Xu LJ, Godoy P, Hu JH, Zhou C, Stickel F, Marx A, Bohle RM, Zimmer V, Lammert F, Mueller S, Gigou M, Samuel D, Mertens PR, Singer MV, Seitz HK, Dooley S. The etiology of liver damage imparts cytokines transforming growth factor beta1 or interleukin-13 as driving forces in fibrogenesis. Hepatology. 2009;50(1):230–43.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. and Huazhong University of Science and Technology Press 2019

Authors and Affiliations

  • Ping Lei
    • 1
  • Guan-Xin Shen
    • 1
  • Fu-Sheng Wang
    • 2
  • Qin Ning
    • 3
  • Hong Ren
    • 4
  • Wei-Ming Yan
    • 3
  • Di Wu
    • 3
  1. 1.Department of Immunology, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
  2. 2.Beijing 302 HospitalBeijingChina
  3. 3.Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
  4. 4.ChongQing Medical UniversityChongqingChina

Personalised recommendations