Advertisement

Research Methods and Techniques for Acute Exacerbation of Chronic Hepatitis B

  • Zhi ChenEmail author
  • Dong Xu
  • Tao Chen
  • Dao-Feng Yang
  • Yi-Min Mao
Chapter

Abstract

This chapter describes modern platform and techniques, cell culture system, animal models and procedures for clinical study for AECHB and HBV-ACLF.
  1. 1.

    Most of medical research methods and techniques for CHB are also applicable on AECHB. Major research methods and technologies in patients with severe hepatitis B include detection of HBV (including detection of genetic variations), the interaction between HBV and cells (e.g. by electrophoretic mobility shift assay, chromatin immunoprecipitation, co-immunoprecipitation, yeast two-hybrid system and assays of cell apoptosis), experimental immunologic methods (e.g. flow cytometry, enzyme-linked immunospot assay and Tetramer/pentamer technology), genetics, epigenetics (e.g. methylation-specific polymerase chain reaction and fluorescence in situ hybridization) and intestinal microecology (e.g. Mitsuoka’s intestinal flora analysis, high-throughput gene sequencing technique, 16S rRNA sequencing, denaturing gradient gel electrophoresis (DGGE)/temperature gradient gel electrophoresis (TGGE), et al.

     
  2. 2.

    Current cell models of HBV infection include those involving HBV infected primary hepatocytes, HBV stable expression hepatoma cell line, fusion cell line of primary hepatocyte with HepG2 and alternative cells. These models play important roles in studying the pathogenesis of HBV and for screening antiviral drugs, but each has some limitations. HepG2-sodium taurocholate cotransporting polypeptide (NTCP) cell line was established recently to explore the cellular pathology of HBV infection.

     
  3. 3.

    There has been great progress in the use of animal models of hepatitis B, but these models also have limitations. Animal models of acute liver failure include viral model, chemical drug model, surgical animal model and gene-modified animal models. One representative model is murine hepatitis virus strain-3 induced acute liver failure in BALB/cmice.

     
  4. 4.

    In recent years, there has been considerable clinical research investigating the medical treatment of severe hepatitis B. The key to clinical research design includes selection of cases and controls, sample size, end points and efficacy measures, safety evaluation, confounding factors, statistics, ethics, pharmacology and toxicology. A reasonable research plan and its strict implement are keys to success.

     

References

  1. 1.
    Locarnini S, Hatzakis A, Heathcote J, Keeffe EB, Liang TJ, Mutimer D, Pawlotsky JM, Zoulim F. Management of antiviral resistance in patients with chronic hepatitis B. Antivir Ther. 2004;9(5):679–93.PubMedGoogle Scholar
  2. 2.
    Izmirli S, Celik DG, Yuksel P, Saribas S, Aslan M, Ergin S, Bahar H, Sen S, Cakal B, Oner A, Kocazeybek B. The detection of occult HBV infection in patients with HBsAg negative pattern by real-time PCR method. Transfus Apher Sci. 2012;47(3):283–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Loeb KR, Jerome KR, Goddard K, Huang M, Cent A, Corey L. High throughput quantitative analysis of hepatitis B virus DNA in serum using the TaqMan fluorogenic detection system. Hepatology. 2000;32(3):626–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Streit S, Michalski CW, Erkan M, Kleeff J, Friess H. Northern blot analysis for detection of RNA in pancreatic cancer cells and tissues. Nat Protoc. 2009;4(1):37–43.CrossRefPubMedGoogle Scholar
  5. 5.
    Kubo KS, Stuart RM, Freitas-Astúa J, Antonioli-Luizon R, Locali-Fabris EC, Coletta-Filho HD, Machado MA, Kitajima EW. Evaluation of the genetic variability of orchid fleck virus by single-strand conformational polymorphism analysis and nucleotide sequencing of a fragment from the nucleocapsid gene. Arch Virol. 2009;154(6):1009–14.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang T, Zhang J, You X, Liu Q, Du Y, Gao Y, Shan C, Kong G, Wang Y, Yang X, Ye L, Zhang X. Hepatitis B virus X protein modulates oncogene Yes-associated protein by CREB to promote growth of hepatoma cells. Hepatology. 2012;56(6):2051–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wang S, Qiu L, Yan X, Jin W, Wang Y, Chen L, Wu E, Ye X, Gao GF, Wang F, Chen Y, Duan Z, Meng S. Loss of microRNA 122 expression in patients with hepatitis B enhances hepatitis B virus replication through cyclin G(1)-modulated P53 activity. Hepatology. 2012;55(3):730–41.CrossRefGoogle Scholar
  8. 8.
    Lun YZ, Chi Q, Wang XL, Wang F, Sui W. Identification of paired immunoglobulin-like type 2 receptor α as hepatitis B virus DNA polymerase transactivated protein 1 interacting proteins. Mol Med Rep. 2014;9(2):720–4.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang H, Huang C, Wang Y, Lu Z, Zhuang N, Zhao D, He J, Shi L. Hepatitis B virus X protein sensitizes TRAIL-induced hepatocyte apoptosis by inhibiting the E3 ubiquitin ligase A20. PLoS One. 2015;10(5):e0127329.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sureau C, Romet-Lemonne JL, Mullins JI, Essex M. Production of hepatitis B virus by a differentiated human hepatoma cell line after transfection with cloned circular HBV DNA. Cell. 1986;47(1):37–47.CrossRefPubMedGoogle Scholar
  11. 11.
    Delaney WE, Isom HC. Hepatitis B virus replication in human HepG2 cells mediated by hepatitis B virus recombinant baculovirus. Hepatology. 1998;28:1134–46.CrossRefGoogle Scholar
  12. 12.
    William E, Delaney IV, Thomas GM, et al. Use of the hepatitis B virus recombinant baculovirus-HepG2 system to study the effects of (−)-β-2,3-dideoxy-3-thiacytidine on replication of hepatitis B virus and accumulation of covalently closed circular DNA. Antimicrob Agents Chemother. 1999;43:2017–26.CrossRefGoogle Scholar
  13. 13.
    Delaney WE, Edwards R, Colledge D, et al. Cross-resistance testing of antihepadnaviral compounds using novel recombinant baculoviruses which encode drug-resistant strains of hepatitis B virus. Antimicrob Agents Chemother. 2001;45:1705–13.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    He TC, Zhou S, Da-Costa LT, et al. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A. 1998;95:2509–14.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Guidotti LG, Matzke B, Schaller H, et al. High-level hepatitis B virus replication in transgenic mice. J Virol. 1995;69:6158–69.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Sprinzl MF, Oberwinkler H, Schaller H, et al. Transfer of hepatitis B virus genome by adenovirus vectors into cultured cells and mice: crossing the species barrier. J Virol. 2001;75:5108–18.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Galle PR, Hagelstein J, Kommerell B, Volkmann M, Schranz P, Zentgraf H. In vitro experimental infection of primary human hepatocytes with hepatitis B virus. Gastroenterology. 1994;106(3):664–73.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gripon P, Diot C, Guguen-Guillouzo C. Reproducible high level infection of cultured adult human hepatocytes by hepatitis B virus: effect of polyethylene glycol on adsorption and penetration. Virology. 1993;192(2):534–40.CrossRefPubMedGoogle Scholar
  19. 19.
    Ochiya T, Tsurimoto T, Ueda K, Okubo K, Shiozawa M, Matsubara K. An in vitro system for infection with hepatitis B virus that uses primary human fetal hepatocytes. Proc Natl Acad Sci U S A. 1989;86(6):1875–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Knowles BB, et al. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science. 1980;209:497–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Knowles BB, Aden DP (1983) Human hepatoma derived cell line, process for preparation thereof, and uses therefor. US Patent 4,393,133Google Scholar
  22. 22.
    Aden DP, et al. Controlled synthesis of HBsAg in a differentiated human liver carcinoma- derived cell line. Nature. 1979;282:615–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Darlington GJ, et al. Growth and hepatospecific gene expression of human hepatoma cells in a defined medium. In Vitro Cell Dev Biol. 1987;23:349–54.CrossRefPubMedGoogle Scholar
  24. 24.
    Iser DM. Coinfection of hepatic cell lines with human immunodeficiency virus and hepatitis B virus leads to an increase in intracellular hepatitis B surface antigen. J Virol. 2010;84(12):5860–7.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lee JH, Ku JL, Park YJ, Lee KU, Kim WH, Park JG. Establishment and characterization of four human hepatocellular carcinoma cell lines containing hepatitis B virus DNA. World J Gastroenterol. 1999;5(4):289–95.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Melegari M, Scaglioni PP, Wands JR. The small envelope protein is required for secretion of a naturally occurring hepatitis B virus mutant with pre-S1 deleted. J Virol. 1997;71(7):5449–54.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Ladner SK, Miller TJ, Otto MJ, King RW. The hepatitis B virus M539V polymerase variation responsible for 3TC resistance also confers cross-resistance to other nucleoside analogues. Antivir Chem Chemother. 1998;9:65–72.PubMedGoogle Scholar
  28. 28.
    Bartholomeusz A, Schinazi RF, Locarnini SA. Significance of mutations in the hepatitis B virus polymerase selected by nucleoside analogues and implications for controlling chronic disease. Viral Hepat Rev. 1998;4:167–87.Google Scholar
  29. 29.
    Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D, Cannie I, Guyomard C, Lucas J, Trepo C, Guguen-Guillouzo C. Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci U S A. 2002;99(24):15655–60. Epub 2002 Nov 13CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gripon P, Cannie I, Urban S. Efficient inhibition of hepatitis B virus infection by acylated peptides derived from the large viral surface protein. J Virol. 2005;79(3):1613.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hantz O, Parent R, Durantel D, Gripon P, Guguen-Guillouzo C, Zoulim F. Persistence of the hepatitis B virus covalently closed circular DNA in HepaRG human hepatocyte-like cells. J Gen Virol. 2009;90(Pt 1):127–35.CrossRefPubMedGoogle Scholar
  32. 32.
    Guillouzo A, Corlu A, Aninat C, Glaise D, Morel F, Guguen-Guillouzo C. The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem Biol Interact. 2007;168(1):66–73. Epub 2006 Dec 16CrossRefPubMedGoogle Scholar
  33. 33.
    Weiss L, Kekulè AS, Jakubowski U, Bürgelt E, Hofschneider PH. The HBV-producing cell line HepG2-4A5: a new in vitro system for studying the regulation of HBV replication and for screening anti-hepatitis B virus drugs. Virology. 1996;216(1):214–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Hu C-T. An in vitro system for the study of hepatitis B gene expression. Tzu Chi Med J. 2004;16:293–300.Google Scholar
  35. 35.
    Seifer M, Heermann KH, Gerlich WH. Replication of hepatitis B virus in transfected nonhepatic cells. Virology. 1990;179(1):300–11.CrossRefPubMedGoogle Scholar
  36. 36.
    De Meyer S, Gong ZJ, Hertogs K, Depla E, van Pelt JF, Roskams T, Maertens G, Yap SH. Influence of the administration of human annexin V on in vitro binding of small hepatitis B surface antigen to human and to rat hepatocytes and on in vitro hepatitis B virus infection. J Viral Hepat. 2000;7(2):104–14.CrossRefPubMedGoogle Scholar
  37. 37.
    Tang H, McLachlan A. Transcriptional regulation of hepatitis B virus by nuclear hormone receptors is a critical determinant of viral tropism. Proc Natl Acad Sci U S A. 2001;98(4):1841–6. Epub 2001 Feb 6CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Si-Tayeb K. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology. 2010;51(1):297–305.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ding Y, Ma L, Wang XZ, Zhang J, Zhao GZ, Wang ZQ, Dou XG. In vitro study on hepatitis B virus infecting human choriocarcinoma JEG3 cells and its mechanism. Intervirology. 2011;54(5):276–81.CrossRefPubMedGoogle Scholar
  40. 40.
    Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, Huang Y, Qi Y, Peng B, Wang H, Fu L, Song M, Chen P, Gao W, Ren B, Sun Y, Cai T, Feng X, Sui J, Li W. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. elife. 2012;13(1):e00049.CrossRefGoogle Scholar
  41. 41.
    Yan R, Zhang Y, Cai D, Liu Y, Cuconati A, Guo H. Spinoculation enhances HBV infection in NTCP-reconstituted hepatocytes. PLoS One. 2015;10(6):e0129889.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Barker LF, Maynard JE, Purcell RH, et al. Hepatitis B virus infection in chimpanzees: titration of subtypes. J Infect Dis. 1975;132:451–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Barker LF, Maynard JE, Purcell RH, Hoofnagle JH, Berquist KR, London WT. Viral hepatitis, type B, in experimental animals. Am J Med Sci. 1975;270:189–95.CrossRefPubMedGoogle Scholar
  44. 44.
    Coffin CS, Michalak TI. Persistence of infectious hepadnavirus in the offspring of woodchuck mothers recovered from viral hepatitis. J Clin Invest. 1999;104:203–12.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Robinson WS. Genetic variation among hepatitis B and related viruses. Ann N Y Acad Sci. 1980;354:371–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Chisari FV. Hepatitis B virus transgenic mice: insights into the virus and the disease. Hepatology. 1995;22:1316–25.PubMedGoogle Scholar
  47. 47.
    !!! INVALID CITATION !!! (16)Google Scholar
  48. 48.
    Tunon MJ, Alvarez M, Culebras JM, Gonzalez-Gallego J. An overview of animal models for investigating the pathogenesis and therapeutic strategies in acute hepatic failure. World J Gastroenterol. 2009;15:3086–98.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Dong JZ, Wang LP, Zhang SN, et al. LPS pretreatment ameliorates D-galactosamine/lipopolysaccharide-induced acute liver failure in rat. Int J Clin Exp Pathol. 2014;7:7399–408.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Chrungoo VJ, Singh K, Singh J. Differential biochemical response of freshly isolated rat hepatocytes to paracetamol, carbon tetrachloride and D-galactosamine toxicity. Indian J Exp Biol. 1997;35:603–10.PubMedGoogle Scholar
  51. 51.
    Francavilla A, Makowka L, Polimeno L, et al. A dog model for acetaminophen-induced fulminant hepatic failure. Gastroenterology. 1989;96:470–8.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Belanger M, Cote J, Butterworth RF. Neurobiological characterization of an azoxymethane mouse model of acute liver failure. Neurochem Int. 2006;48:434–40.CrossRefPubMedGoogle Scholar
  53. 53.
    Pitot HC, Goldsworthy T, Moran S, Sirica AE, Weeks J. Properties of incomplete carcinogens and promoters in hepatocarcinogenesis. Carcinog Compr Surv. 1982;7:85–98.PubMedGoogle Scholar
  54. 54.
    Knubben K, Thiel C, Schenk M, et al. A new surgical model for hepatectomy in pigs. Eur Surg Res. 2008;40:41–6.CrossRefPubMedGoogle Scholar
  55. 55.
    Terblanche J, Hickman R. Animal models of fulminant hepatic failure. Dig Dis Sci. 1991;36:770–4.CrossRefPubMedGoogle Scholar
  56. 56.
    Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenborn K, et al. Hepatic encephalopathy—definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology. 2002;35:716–21.CrossRefPubMedGoogle Scholar
  57. 57.
    Chinese Society of Gastroenterology. Consensus on the diagnosis and treatment of hepatic encephalopathy. Zhonghua Gan Zang Bing Za Zhi. 21:641–51.Google Scholar
  58. 58.
    Bajaj JS, Cordoba J, Mullen KD, Amodio P, Shawcross DL, et al. Review article: the design of clinical trials in hepatic encephalopathy—an International Society for Hepatic Encephalopathy and Nitrogen Metabolism (ISHEN) consensus statement. Aliment Pharmacol Ther. 2011;33:739–47.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lauridsen MM, Poulsen L, Rasmussen CK, Hogild M, Nielsen MK, et al. Effects of common chronic medical conditions on psychometric tests used to diagnose minimal hepatic encephalopathy. Metab Brain Dis. 2016;31:267–72.CrossRefPubMedGoogle Scholar
  60. 60.
    Tripathi S, Tripathi YB. Hepatic encephalopathy: cause and possible management with botanicals. Recent Patents Inflamm Allergy Drug Discov. 2014;8:185–91.CrossRefGoogle Scholar
  61. 61.
    Butterworth RF. Pathophysiology of brain dysfunction in hyperammonemic syndromes: the many faces of glutamine. Mol Genet Metab. 2014;113:113–7.CrossRefPubMedGoogle Scholar
  62. 62.
    Prakash R, Mullen KD. Mechanisms, diagnosis and management of hepatic encephalopathy. Nat Rev Gastroenterol Hepatol. 2010;7:515–25.CrossRefPubMedGoogle Scholar
  63. 63.
    Ott P, Vilstrup H. Cerebral effects of ammonia in liver disease: current hypotheses. Metab Brain Dis. 2014;29:901–11.CrossRefPubMedGoogle Scholar
  64. 64.
    Jones EA, Mullen KD. Theories of the pathogenesis of hepatic encephalopathy. Clin Liver Dis. 2012;16:7–26.CrossRefPubMedGoogle Scholar
  65. 65.
    Gooday R, Hayes PC, Bzeizi K, O’Carroll RE. Benzodiazepine receptor antagonism improves reaction time in latent hepatic encephalopathy. Psychopharmacology. 1995;119:295–8.CrossRefPubMedGoogle Scholar
  66. 66.
    Jones EA. Ammonia, the GABA neurotransmitter system, and hepatic encephalopathy. Metab Brain Dis. 2002;17:275–81.CrossRefPubMedGoogle Scholar
  67. 67.
    Montana V, Verkhratsky A, Parpura V. Pathological role for exocytotic glutamate release from astrocytes in hepatic encephalopathy. Curr Neuropharmacol. 2014;12:324–33.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ding S, Yang J, Liu L, Ye Y, Wang X, et al. Elevated dopamine induces minimal hepatic encephalopathy by activation of astrocytic NADPH oxidase and astrocytic protein tyrosine nitration. Int J Biochem Cell Biol. 2014;55:252–63.CrossRefPubMedGoogle Scholar
  69. 69.
    Holecek M. Evidence of a vicious cycle in glutamine synthesis and breakdown in pathogenesis of hepatic encephalopathy-therapeutic perspectives. Metab Brain Dis. 2014;29:9–17.CrossRefPubMedGoogle Scholar
  70. 70.
    Kobtan AA, El-Kalla FS, Soliman HH, Zakaria SS, Goda MA. Higher grades and repeated recurrence of hepatic encephalopathy may be related to high serum manganese levels. Biol Trace Elem Res. 2016;169:153–8.CrossRefPubMedGoogle Scholar
  71. 71.
    Holecek M. Ammonia and amino acid profiles in liver cirrhosis: effects of variables leading to hepatic encephalopathy. Nutrition. 2015;31:14–20.CrossRefPubMedGoogle Scholar
  72. 72.
    Shawcross DL, Wright G, Olde Damink SW, Jalan R. Role of ammonia and inflammation in minimal hepatic encephalopathy. Metab Brain Dis. 2007;22:125–38.CrossRefPubMedGoogle Scholar
  73. 73.
    Shawcross DL, Davies NA, Williams R, Jalan R. Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J Hepatol. 2004;40:247–54.CrossRefPubMedGoogle Scholar
  74. 74.
    Merola J, Chaudhary N, Qian M, Jow A, Barboza K, et al. Hyponatremia: a risk factor for early overt encephalopathy after transjugular intrahepatic portosystemic shunt creation. J Clin Med. 2014;3:359–72.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Gaduputi V, Chandrala C, Abbas N, Tariq H, Chilimuri S, et al. Prognostic significance of hypokalemia in hepatic encephalopathy. Hepato-Gastroenterology. 2014;61:1170–4.PubMedGoogle Scholar
  76. 76.
    Tsai CF, Chen MH, Wang YP, Chu CJ, Huang YH, et al. Proton pump inhibitors increase risk for hepatic encephalopathy in patients with cirrhosis in population study. Gastroenterology. 2016;152:134–41.CrossRefPubMedGoogle Scholar
  77. 77.
    Jepsen P, Christensen J, Weissenborn K, Watson H, Vilstrup H. Epilepsy as a risk factor for hepatic encephalopathy in patients with cirrhosis: a cohort study. BMC Gastroenterol. 2016;16:77.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Wang JY, Zhang NP, Chi BR, Mi YQ, Meng LN, et al. Prevalence of minimal hepatic encephalopathy and quality of life evaluations in hospitalized cirrhotic patients in China. World J Gastroenterol. 2013;19:4984–91.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Borentain P, Soussan J, Resseguier N, Botta-Fridlund D, Dufour JC, et al. The presence of spontaneous portosystemic shunts increases the risk of complications after transjugular intrahepatic portosystemic shunt (TIPS) placement. Diagn Interv Imaging. 2016;97:643–50.CrossRefPubMedGoogle Scholar
  80. 80.
    Nardelli S, Gioia S, Pasquale C, Pentassuglio I, Farcomeni A, et al. Cognitive impairment predicts the occurrence of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt. Am J Gastroenterol. 2016;111:523–8.CrossRefPubMedGoogle Scholar
  81. 81.
    Brenner M, Butz M, May ES, Kahlbrock N, Kircheis G, et al. Patients with manifest hepatic encephalopathy can reveal impaired thermal perception. Acta Neurol Scand. 2015;132:156–63.CrossRefPubMedGoogle Scholar
  82. 82.
    Kircheis G, Fleig WE, Gortelmeyer R, Grafe S, Haussinger D. Assessment of low-grade hepatic encephalopathy: a critical analysis. J Hepatol. 2007;47:642–50.CrossRefPubMedGoogle Scholar
  83. 83.
    Hassanein TI, Hilsabeck RC, Perry W. Introduction to the hepatic encephalopathy scoring algorithm (HESA). Dig Dis Sci. 2008;53:529–38.CrossRefPubMedGoogle Scholar
  84. 84.
    Ong JP, Aggarwal A, Krieger D, Easley KA, Karafa MT, et al. Correlation between ammonia levels and the severity of hepatic encephalopathy. Am J Med. 2003;114:188–93.CrossRefPubMedGoogle Scholar
  85. 85.
    Qureshi MO, Khokhar N, Shafqat F. Ammonia levels and the severity of hepatic encephalopathy. J Coll Physicians Surg Pak. 2014;24:160–3.PubMedGoogle Scholar
  86. 86.
    Haussinger D, Schliess F. Pathogenetic mechanisms of hepatic encephalopathy. Gut. 2008;57:1156–65.CrossRefPubMedGoogle Scholar
  87. 87.
    Dabos KJ, Parkinson JA, Sadler IH, Plevris JN, Hayes PC. (1)H nuclear magnetic resonance spectroscopy-based metabonomic study in patients with cirrhosis and hepatic encephalopathy. World J Hepatol. 2015;7:1701–7.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Amodio P, Campagna F, Olianas S, Iannizzi P, Mapelli D, et al. Detection of minimal hepatic encephalopathy: normalization and optimization of the Psychometric Hepatic Encephalopathy Score. A neuropsychological and quantified EEG study. J Hepatol. 2008;49:346–53.CrossRefPubMedGoogle Scholar
  89. 89.
    Sharma P, Sharma BC, Puri V, Sarin SK. Critical flicker frequency: diagnostic tool for minimal hepatic encephalopathy. J Hepatol. 2007;47:67–73.CrossRefPubMedGoogle Scholar
  90. 90.
    Romero-Gomez M, Cordoba J, Jover R, del Olmo JA, Ramirez M, et al. Value of the critical flicker frequency in patients with minimal hepatic encephalopathy. Hepatology. 2007;45:879–85.CrossRefPubMedGoogle Scholar
  91. 91.
    Olesen SS, Gram M, Jackson CD, Halliday E, Sandberg TH, et al. Electroencephalogram variability in patients with cirrhosis associates with the presence and severity of hepatic encephalopathy. J Hepatol. 2016;65:517–23.CrossRefPubMedGoogle Scholar
  92. 92.
    Jackson CD, Gram M, Halliday E, Olesen SS, Sandberg TH, et al. New spectral thresholds improve the utility of the electroencephalogram for the diagnosis of hepatic encephalopathy. Clin Neurophysiol. 2016;127:2933–41.CrossRefPubMedGoogle Scholar
  93. 93.
    Bajaj JS, Wade JB, Sanyal AJ. Spectrum of neurocognitive impairment in cirrhosis: implications for the assessment of hepatic encephalopathy. Hepatology. 2009;50:2014–21.CrossRefPubMedGoogle Scholar
  94. 94.
    Maharshi S, Sharma BC, Sachdeva S, Srivastava S, Sharma P. Efficacy of nutritional therapy for patients with cirrhosis and minimal hepatic encephalopathy in a randomized trial. Clin Gastroenterol Hepatol. 2016;14:454–60. e453; quiz e433CrossRefPubMedGoogle Scholar
  95. 95.
    Amodio P, Canesso F, Montagnese S. Dietary management of hepatic encephalopathy revisited. Curr Opin Clin Nutr Metab Care. 2014;17:448–52.CrossRefPubMedGoogle Scholar
  96. 96.
    Sawhney R, Jalan R. Liver: the gut is a key target of therapy in hepatic encephalopathy. Nat Rev Gastroenterol Hepatol. 2015;12:7–8.CrossRefPubMedGoogle Scholar
  97. 97.
    Rahimi RS, Singal AG, Cuthbert JA, Rockey DC. Lactulose vs polyethylene glycol 3350—electrolyte solution for treatment of overt hepatic encephalopathy: the HELP randomized clinical trial. JAMA Intern Med. 2014;174:1727–33.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Rahimi RS, Rockey DC. Novel ammonia-lowering agents for hepatic encephalopathy. Clin Liver Dis. 2015;19:539–49.CrossRefPubMedGoogle Scholar
  99. 99.
    Rai R, Ahuja CK, Agrawal S, Kalra N, Duseja A, et al. Reversal of low-grade cerebral edema after lactulose/rifaximin therapy in patients with cirrhosis and minimal hepatic encephalopathy. Clin Transl Gastroenterol. 2015;6:e111.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Shavakhi A, Hashemi H, Tabesh E, Derakhshan Z, Farzamnia S, et al. Multistrain probiotic and lactulose in the treatment of minimal hepatic encephalopathy. J Res Med Sci. 2014;19:703–8.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Morgan MY, Hawley KE. Lactitol vs. lactulose in the treatment of acute hepatic encephalopathy in cirrhotic patients: a double-blind, randomized trial. Hepatology. 1987;7:1278–84.CrossRefPubMedGoogle Scholar
  102. 102.
    Agrawal A, Sharma BC, Sharma P, Sarin SK. Secondary prophylaxis of hepatic encephalopathy in cirrhosis: an open-label, randomized controlled trial of lactulose, probiotics, and no therapy. Am J Gastroenterol. 2012;107:1043–50.CrossRefPubMedGoogle Scholar
  103. 103.
    Paik YH, Lee KS, Han KH, Song KH, Kim MH, et al. Comparison of rifaximin and lactulose for the treatment of hepatic encephalopathy: a prospective randomized study. Yonsei Med J. 2005;46:399–407.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Bajaj JS, Barrett AC, Bortey E, Paterson C, Forbes WP. Prolonged remission from hepatic encephalopathy with rifaximin: results of a placebo crossover analysis. Aliment Pharmacol Ther. 2015;41:39–45.CrossRefPubMedGoogle Scholar
  105. 105.
    Kimer N, Krag A, Moller S, Bendtsen F, Gluud LL. Systematic review with meta-analysis: the effects of rifaximin in hepatic encephalopathy. Aliment Pharmacol Ther. 2014;40:123–32.CrossRefPubMedGoogle Scholar
  106. 106.
    Mullen KD, Sanyal AJ, Bass NM, Poordad FF, Sheikh MY, et al. Rifaximin is safe and well tolerated for long-term maintenance of remission from overt hepatic encephalopathy. Clin Gastroenterol Hepatol. 2014;12:1390–1397.e1392.CrossRefPubMedGoogle Scholar
  107. 107.
    Sidhu SS, Goyal O, Parker RA, Kishore H, Sood A. Rifaximin vs. lactulose in treatment of minimal hepatic encephalopathy. Liver Int. 2016;36:378–85.CrossRefPubMedGoogle Scholar
  108. 108.
    Lunia MK, Sharma BC, Sharma P, Sachdeva S, Srivastava S. Probiotics prevent hepatic encephalopathy in patients with cirrhosis: a randomized controlled trial. Clin Gastroenterol Hepatol. 2014;12:1003–1008.e1001.CrossRefPubMedGoogle Scholar
  109. 109.
    Saab S, Suraweera D, Au J, Saab EG, Alper TS, et al. Probiotics are helpful in hepatic encephalopathy: a meta-analysis of randomized trials. Liver Int. 2016;36:986–93.CrossRefPubMedGoogle Scholar
  110. 110.
    Sharma P, Sharma BC, Puri V, Sarin SK. An open-label randomized controlled trial of lactulose and probiotics in the treatment of minimal hepatic encephalopathy. Eur J Gastroenterol Hepatol. 2008;20:506–11.CrossRefPubMedGoogle Scholar
  111. 111.
    Dhiman RK, Rana B, Agrawal S, Garg A, Chopra M, et al. Probiotic VSL#3 reduces liver disease severity and hospitalization in patients with cirrhosis: a randomized, controlled trial. Gastroenterology. 2014;147:1327–1337.e1323.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Matoori S, Leroux JC. Recent advances in the treatment of hyperammonemia. Adv Drug Deliv Rev. 2015;90:55–68.CrossRefPubMedGoogle Scholar
  113. 113.
    Diaz-Herrero MM, del Campo JA, Carbonero-Aguilar P, Vega-Perez JM, Iglesias-Guerra F, et al. THDP17 decreases ammonia production through glutaminase inhibition. A new drug for hepatic encephalopathy therapy. PLoS One. 2014;9:e109787.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Gluud LL, Vilstrup H, Morgan MY (2016) Non-absorbable disaccharides versus placebo/no intervention and lactulose versus lactitol for the prevention and treatment of hepatic encephalopathy in people with cirrhosis. Cochrane Database Syst Rev: Cd003044.Google Scholar
  115. 115.
    Cauli O, Rodrigo R, Piedrafita B, Boix J, Felipo V. Inflammation and hepatic encephalopathy: ibuprofen restores learning ability in rats with portacaval shunts. Hepatology. 2007;46:514–9.CrossRefPubMedGoogle Scholar
  116. 116.
    Poo JL, Gongora J, Sanchez-Avila F, Aguilar-Castillo S, Garcia-Ramos G, et al. Efficacy of oral L-ornithine-L-aspartate in cirrhotic patients with hyperammonemic hepatic encephalopathy. Results of a randomized, lactulose-controlled study. Ann Hepatol. 2006;5:281–8.PubMedGoogle Scholar
  117. 117.
    Rockey DC, Vierling JM, Mantry P, Ghabril M, Brown RS Jr, et al. Randomized, double-blind, controlled study of glycerol phenylbutyrate in hepatic encephalopathy. Hepatology. 2014;59:1073–83.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Mousa N, Abdel-Razik A, Zaher A, Hamed M, Shiha G, et al. The role of antioxidants and zinc in minimal hepatic encephalopathy: a randomized trial. Therap Adv Gastroenterol. 2016;9:684–91.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Abdelaziz RR, Elkashef WF, Said E. Tranilast reduces serum IL-6 and IL-13 and protects against thioacetamide-induced acute liver injury and hepatic encephalopathy. Environ Toxicol Pharmacol. 2015;40:259–67.CrossRefPubMedGoogle Scholar
  120. 120.
    Blei AT. Is it worth removing albumin-bound substances in hepatic encephalopathy? Z Gastroenterol. 2001;39(Suppl 2):8.CrossRefPubMedGoogle Scholar
  121. 121.
    Gluud LL, Dam G, Les I, Cordoba J, Marchesini G, et al (2015) Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst Rev: Cd001939.Google Scholar
  122. 122.
    Morgan MY, Blei A, Grungreiff K, Jalan R, Kircheis G, et al. The treatment of hepatic encephalopathy. Metab Brain Dis. 2007;22:389–405.CrossRefPubMedGoogle Scholar
  123. 123.
    Ahboucha S, Butterworth RF. The neurosteroid system: implication in the pathophysiology of hepatic encephalopathy. Neurochem Int. 2008;52:575–87.CrossRefPubMedGoogle Scholar
  124. 124.
    Torres-Vega MA, Vargas-Jeronimo RY, Montiel-Martinez AG, Munoz-Fuentes RM, Zamorano-Carrillo A, et al. Delivery of glutamine synthetase gene by baculovirus vectors: a proof of concept for the treatment of acute hyperammonemia. Gene Ther. 2015;22:58–64.CrossRefPubMedGoogle Scholar
  125. 125.
    Bai M, He C, Yin Z, Niu J, Wang Z, et al. Randomised clinical trial: L-ornithine-L-aspartate reduces significantly the increase of venous ammonia concentration after TIPSS. Aliment Pharmacol Ther. 2014;40:63–71.CrossRefPubMedGoogle Scholar
  126. 126.
    Luo L, Fu S, Zhang Y, Wang J. Early diet intervention to reduce the incidence of hepatic encephalopathy in cirrhosis patients: post-transjugular intrahepatic portosystemic shunt (TIPS) findings. Asia Pac J Clin Nutr. 2016;25:497–503.PubMedGoogle Scholar
  127. 127.
    Lynn AM, Singh S, Congly SE, Khemani D, Johnson DH, et al. Embolization of portosystemic shunts for treatment of medically refractory hepatic encephalopathy. Liver Transpl. 2016;22:723–31.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Hung PC, Wang HS, Hsia SH, Wong AM. Plasmapheresis as adjuvant therapy in Stevens-Johnson syndrome and hepatic encephalopathy. Brain and Development. 2014;36:356–8.CrossRefPubMedGoogle Scholar
  129. 129.
    Wong RJ, Gish RG, Ahmed A. Hepatic encephalopathy is associated with significantly increased mortality among patients awaiting liver transplantation. Liver Transpl. 2014;20:1454–61.CrossRefPubMedGoogle Scholar
  130. 130.
    Atluri DK, Asgeri M, Mullen KD. Reversibility of hepatic encephalopathy after liver transplantation. Metab Brain Dis. 2010;25:111–3.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. and Huazhong University of Science and Technology Press 2019

Authors and Affiliations

  • Zhi Chen
    • 1
    Email author
  • Dong Xu
    • 2
  • Tao Chen
    • 2
  • Dao-Feng Yang
    • 2
  • Yi-Min Mao
    • 3
  1. 1.The First Affiliated Hospital, Zhejiang UniversityZhejiangChina
  2. 2.Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  3. 3.Shanghai Jiao Tong University School of MedicineShanghaiChina

Personalised recommendations