Treatment of AECHB and Severe Hepatitis (Liver Failure)

  • Yu-Ming Wang
  • Ke Li
  • Xiao-Guang Dou
  • Han Bai
  • Xi-Ping Zhao
  • Xiong Ma
  • Lan-Juan LiEmail author
  • Zhi-Shui Chen
  • Yuan-Cheng Huang


This chapter describes the general treatment and immune principles and internal management for AECHB and HBV ACLF, including ICU monitoring, general supportive medications/nutrition/nursing, immune therapy, artificial liver supportive systems, hepatocyte/stem cell, and liver transplant, management for special populations, frequently clinical complications and the utilization of Chinese traditional medicines.
  1. 1.

    Early clinical indicators of severe hepatitis B include acratia, gastrointestinal symptoms, a daily increase in serum bilirubin >1 mg/dL, toxic intestinal paralysis, bleeding tendency and mild mind anomaly or character change, and the presence of other diseases inducing severe hepatitis. Laboratory indicators include T-Bil, PTA, cholinesterase, pre-albumin and albumin. The roles of immune indicators (such as IL-6, TNF-α, and fgl2), gene polymorphisms, HBV genotypes, and gene mutations as early clinical indicators.

  2. 2.

    Intensive Care Unit monitor patients with severe hepatitis include intracranial pressure, infection, blood dynamics, respiratory function, renal function, blood coagulation function, nutritional status and blood purification process. Nursing care should not only include routine care, but psychological and special care (complications).

  3. 3.

    Nutrition support and nursing care should be maintained throughout treatment for severe hepatitis. Common methods of evaluating nutritional status include direct human body measurement, creatinine height index (CHI) and subject global assessment of nutrition (SGA). Malnourished patients should receive enteral or parenteral nutrition support.

  4. 4.

    Immune therapies for severe hepatitis include promoting hepatocyte regeneration (e.g. with glucagon, hepatocyte growth factor and prostaglandin E1), glucocorticoid suppressive therapy, and targeting molecular blocking. Corticosteroid treatment should be early and sufficient, and adverse drug reactions monitored. Treatments currently being investigated are those targeting Toll-like receptors, NK cell/NK cell receptors, macrophage/immune coagulation system, CTLA-4/PD-1 and stem cell transplantation.

  5. 5.

    In addition to conventional drugs and radioiodine, corticosteroids and artificial liver treatment can also be considered for severe hepatitis patients with hyperthyreosis. Patients with gestational severe hepatitis require preventive therapy for fetal growth restriction, and it is necessary to choose the timing and method of fetal delivery. For patients with both diabetes and severe hepatitis, insulin is preferred to oral antidiabetic agents to control blood glucose concentration. Liver toxicity of corticosteroids and immune suppressors should be monitored during treatment for severe hepatitis in patients with connective tissue diseases including SLE, RA and sicca syndrome. Patient with connective tissue diseases should preferably be started after the antiviral treatment with nucleos(t)ide analogues.

  6. 6.

    An artificial liver can improve patients’ liver function; remove endotoxins, blood ammonia and other toxins; correct amino acid metabolism and coagulation disorders; and reverse internal environment imbalances. Non-bioartificial livers are suitable for patients with early and middle stage severe hepatitis; for late-stage patients waiting for liver transplantation; and for transplanted patients with rejection reaction or transplant failure. The type of artificial liver should be determined by each patient’s condition and previous treatment purpose, and patients should be closely monitored for adverse reactions and complications. Bio- and hybrid artificial livers are still under development.

  7. 7.

    MELD score is the international standard for choosing liver transplantation. Surgical methods mainly include the in situ classic type and the piggyback type; transplantation includes no liver prophase, no liver phase or new liver phase. Preoperative preparation, management of intraoperative and postoperative complications and postoperative long-term treatment are keys to success.

  8. 8.

    Severe hepatitis belongs to the categories of “acute jaundice”, “scourge jaundice”, and “hot liver” in traditional Chinese medicine. Treatment methods include Chinese traditional medicines, acupuncture and acupoint injection, external application of drugs, umbilical compress therapy, drip, blow nose therapy, earpins, and clysis. Dietary care is also an important part of traditional Chinese medicine treatment.



  1. 1.
    Huifen W, Haibin S. Intensive care management of liver failure. Infect Dis Inform. 2009;22(5):273–5. (in Chinese)Google Scholar
  2. 2.
    Chunrong H, Ruide L. Intensive care of liver failure. New Chinese Med. 2006;37(10):685–6. (in Chinese)Google Scholar
  3. 3.
    Dawei L. Practice of critical care medicine. 1st ed. Shanghai: People’s Medical Publishing House; 2010. (in Chinese)Google Scholar
  4. 4.
    Liver Failure, Artificial Liver Group CSoID, Association CM, Severe Liver Diseases and Artificial Liver Group CSoH, et al. Diagnostic and treatment guidelines for liver failure. Chin J Hepatol. 2006;14(9):643–6.Google Scholar
  5. 5.
    Stravitz RT, Kramer AH, Davern T, et al. Intensive care of patients with acute liver failure: recommendations of the U.S. Acute Liver Failure Study Group. Crit Care Med. 2007;35(11):2498–508.Google Scholar
  6. 6.
    Findlay JY, Fix OK, Paugam-Burtz C, et al. Critical care of the end-stage liver disease patient awaiting liver transplantation. Liver Transpl. 2011;17(5):496–510.PubMedGoogle Scholar
  7. 7.
    Stravitz RT. Critical management decisions in patients with acute liver failure. Chest. 2008;134(5):1092–102.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Bernal W, Jalan R, Quaglia A, et al. Acute-on-chronic liver failure. Lancet. 2015;386(10003):1576–87.Google Scholar
  9. 9.
    Strauss G, Hansen BA, Kirkegaard P, et al. Liver function, cerebral blood flow autoregulation, and hepatic encephalopathy in fulminant hepatic failure. Hepatology. 1997;25(4):837–9.PubMedGoogle Scholar
  10. 10.
    Larsen FS, Wendon J. Brain edema in liver failure: basic physiologic principles and management. Liver Transpl. 2002;8(11):983–9.PubMedGoogle Scholar
  11. 11.
    Plauth M, Cabré E, Campillo B, et al. ESPEN guidelines on parenteral nutrition: hepatology. Clin Nutr. 2009;28(4):436–44.PubMedGoogle Scholar
  12. 12.
    Kondrup J, Rasmussen HH, Hamberg O, et al. Nutritional risk screening (NRS 2002): a new method based on an analysis of controlled clinical trials. Clin Nutr. 2003;22(3):321–36.PubMedGoogle Scholar
  13. 13.
    Canabal JM, Kramer DJ. Management of sepsis in patients with liver failure. Curr Opin Crit Care. 2008;14(2):189–97.PubMedGoogle Scholar
  14. 14.
    Bémeur C, Desjardins P, Butterworth RF. Role of nutrition in the management of hepatic encephalopathy in end-stage liver failure. J Nutr Metab. 2010;2010:489823.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Ellis A, Wendon J. Circulatory, respiratory, cerebral, and renal derangements in acute liver failure: pathophysiology and management. Semin Liver Dis. 1996;16(4):379–88.PubMedGoogle Scholar
  16. 16.
    Shawcross DL, Davies NA, Mookerjee RP, et al. Worsening of cerebral hyperemia by the administration of terlipressin in acute liver failure with severe encephalopathy. Hepatology. 2004;39(2):471–5.PubMedGoogle Scholar
  17. 17.
    Wright G, Sharifi Y, Jover-Cobos M, et al. The brain in acute on chronic liver failure. Metab Brain Dis. 2014;29(4):965–73.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Rolando N, Philpott-Howard J, Williams R. Bacterial and fungal infection in acute liver failure. Semin Liver Dis. 1996;16(4):389–402.Google Scholar
  19. 19.
    Rolando N, Wade J, Davalos M, et al. The systemic inflammatory response syndrome in acute liver failure. Hepatology. 2000;32(4 Pt 1):734–9.PubMedGoogle Scholar
  20. 20.
    Dellinger RP, Levy MM, Carlet JM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med. 2008;34(1):17–60.PubMedGoogle Scholar
  21. 21.
    Clemmesen JO, Galatius S, Skak C, et al. The effect of increasing blood pressure with dopamine on systemic, splanchnic, and lower extremity hemodynamics in patients with acute liver failure. Scand J Gastroenterol. 1999;34(9):921–7.PubMedGoogle Scholar
  22. 22.
    MacGilchrist AJ, Sumner D, Reid JL. Impaired pressor reactivity in cirrhosis: evidence for a peripheral vascular defect. Hepatology. 1991;13(4):689–94.PubMedGoogle Scholar
  23. 23.
    Annane D. Glucocorticoids in the treatment of severe sepsis and septic shock. Curr Opin Crit Care. 2005;11(5):449–53.PubMedGoogle Scholar
  24. 24.
    Harry R, Auzinger G, Wendon J. The clinical importance of adrenal insufficiency in acute hepatic dysfunction. Hepatology. 2002;36(2):395–402.PubMedGoogle Scholar
  25. 25.
    McDowell TD, Stevens RD, Gurakar A. Acute liver failure: a management challenge for the practicing gastroenterologist. Gastroenterol Hepatol (N Y). 2010;6(7):444–50.Google Scholar
  26. 26.
    Patton H, Misel M, Gish RG. Acute liver failure in adults: an evidence-based management protocol for clinicians. Gastroenterol Hepatol (N Y). 2012;8(3):161–212.Google Scholar
  27. 27.
    Sarin SK, Kedarisetty CK, Abbas Z, et al. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific Association for the Study of the Liver (APASL) 2014. Hepatol Int. 2014;8(4):453–71.Google Scholar
  28. 28.
    Lee WM, Squires RH, Nyberg SL, et al. Acute liver failure: summary of a workshop. Hepatology. 2008;47(4):1401–15.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Villanueva C. Gastrointestinal bleeding: blood transfusion for acute upper gastrointestinal bleeding. Nat Rev Gastroenterol Hepatol. 2015;12(8):432–4.PubMedGoogle Scholar
  30. 30.
    Zamora NLE, Aguirre VJ, Chávez-Tapia NC, et al. Acute-on-chronic liver failure: a review. Ther Clin Risk Manag. 2014;10:295–303.Google Scholar
  31. 31.
    Bémeur C, Butterworth RF. Reprint of: nutrition in the management of cirrhosis and its neurological complications. J Clin Exp Hepatol. 2015;5(Suppl 1):S131–40.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Sawhney R, Jalan R. Liver: the gut is a key target of therapy in hepatic encephalopathy. Nat Rev Gastroenterol Hepatol. 2015;12(1):7–8.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Kim TY, Kim DJ. Acute-on-chronic liver failure. Clin Mol Hepatol. 2013;19(4):349–59.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Asrani SK, Kim WR. Model for end-stage liver disease: end of the first decade. Clin Liver Dis. 2011;15(4):685–98.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Starr S, Hand H. Nursing care of chronic and acute liver failure. Nurs Stand. 2002;16(40):47–54. quiz 55–6PubMedGoogle Scholar
  36. 36.
    Mitchell MC, Friedman LS, McClain CJ. Medical management of severe alcoholic hepatitis: expert review from the Clinical Practice Updates Committee of the AGA Institute. Clin Gastroenterol Hepatol. 2017;15(1):5–12.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Fung J, Lai CL, Yuen MF. Management of chronic hepatitis B in severe liver disease. World J Gastroenterol. 2014;20:16053–61.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Wieser V, Tilg H. Management of severe alcoholic hepatitis. Wien Med Wochenschr. 2014;164:3–8.PubMedGoogle Scholar
  39. 39.
    Liver F, Artificial Liver Group CSoIDCMA, Severe Liver D, Artificial Liver Group CSoHCMA. Diagnostic and treatment guidelines for liver failure (2012 version). Zhonghua Gan Zang Bing Za Zhi. 2013;21:177–83.Google Scholar
  40. 40.
    Mathurin P, Moreno C, Samuel D, Dumortier J, Salleron J, Durand F, Castel H, et al. Early liver transplantation for severe alcoholic hepatitis. N Engl J Med. 2011;365:1790–800.PubMedGoogle Scholar
  41. 41.
    Aberg F, Nordin A, Makisalo H, Isoniemi H. Who is too healthy and who is too sick for liver transplantation: external validation of prognostic scores and survival-benefit estimation. Scand J Gastroenterol. 2015;50:1144–51.PubMedGoogle Scholar
  42. 42.
    Oka H, Fujiwara K, Okita K, Ishii H, Sakuma A. A multi-centre double-blind controlled trial of glucagon and insulin therapy for severe acute hepatitis. Gastroenterol Jpn. 1989;24:332–6.PubMedGoogle Scholar
  43. 43.
    Trinchet JC, Balkau B, Poupon RE, et al. Treatment of severe alcoholic hepatitis by infusion of insulin and glucagon: a multicenter sequential trial. Hepatology. 1992;15(1):76–81.PubMedGoogle Scholar
  44. 44.
    Gohda E, Tsubouchi H, Nakayama H, Hirono S, Takahashi K, Koura M, Hashimoto S, et al. Human hepatocyte growth factor in plasma from patients with fulminant hepatic failure. Exp Cell Res. 1986;166:139–50.PubMedGoogle Scholar
  45. 45.
    Suarez-Causado A, Caballero-Diaz D, Bertran E, Roncero C, Addante A, Garcia-Alvaro M, Fernandez M, et al. HGF/c-Met signaling promotes liver progenitor cell migration and invasion by an epithelial-mesenchymal transition-independent, phosphatidyl inositol-3 kinase-dependent pathway in an in vitro model. Biochim Biophys Acta. 1853;2015:2453–63.Google Scholar
  46. 46.
    Moumen A, Ieraci A, Patane S, Sole C, Comella JX, Dono R, Maina F. Met signals hepatocyte survival by preventing Fas-triggered FLIP degradation in a PI3k-Akt-dependent manner. Hepatology. 2007;45:1210–7.PubMedGoogle Scholar
  47. 47.
    Kosai K, Matsumoto K, Nagata S, Tsujimoto Y, Nakamura T. Abrogation of Fas-induced fulminant hepatic failure in mice by hepatocyte growth factor. Biochem Biophys Res Commun. 1998;244:683–90.PubMedGoogle Scholar
  48. 48.
    Aguilar-Valenzuela R, Carlsen ED, Liang Y, Soong L, Sun J. Hepatocyte growth factor in dampening liver immune-mediated pathology in acute viral hepatitis without compromising antiviral activity. J Gastroenterol Hepatol. 2014;29:878–86.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Thatch KA, Katz MS, Haber MM, Schwartz MZ. Growth factor modulation of hepatic inflammation: a novel approach to the management of total parenteral nutrition-associated liver disease. J Pediatr Surg. 2010;45:89–94.PubMedGoogle Scholar
  50. 50.
    Ido A, Moriuchi A, Numata M, Murayama T, Teramukai S, Marusawa H, Yamaji N, et al. Safety and pharmacokinetics of recombinant human hepatocyte growth factor (rh-HGF) in patients with fulminant hepatitis: a phase I/II clinical trial, following preclinical studies to ensure safety. J Transl Med. 2011;9:55.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Ido A, Moriuchi A, Marusawa H, Ikeda K, Numata M, Yamaji N, Setoyama H, et al. Translational research on HGF: a phase I/II study of recombinant human HGF for the treatment of fulminant hepatic failure. Hepatol Res. 2008;38(Suppl 1):S88–92.PubMedGoogle Scholar
  52. 52.
    Nakanishi C, Moriuchi A, Ido A, Numata M, Kim ID, Kusumoto K, Hasuike S, et al. Effect of hepatocyte growth factor on endogenous hepatocarcinogenesis in rats fed a choline-deficient L-amino acid-defined diet. Oncol Rep. 2006;16:25–31.PubMedGoogle Scholar
  53. 53.
    Togo S, Chen H, Takahashi T, Kubota T, Matsuo K, Morioka D, Watanabe K, et al. Prostaglandin E1 improves survival rate after 95% hepatectomy in rats. J Surg Res. 2008;146:66–72.PubMedGoogle Scholar
  54. 54.
    Ikegami T, Matsuzaki Y, Kurusu J, Yoshiga S, Saito Y, Chiba T, Abei M, et al. Randomized control trial of lipo-prostaglandin E1 in patients with acute liver injury induced by lipiodol-targeted chemotherapy. Clin Pharmacol Ther. 1995;57:582–9.PubMedGoogle Scholar
  55. 55.
    Jia C, Dai C, Bu X, Peng S, Xu F, Xu Y, Zhao Y. Co-administration of prostaglandin E1 with somatostatin attenuates acute liver damage after massive hepatectomy in rats via inhibition of inflammatory responses, apoptosis and endoplasmic reticulum stress. Int J Mol Med. 2013;31:416–22.PubMedGoogle Scholar
  56. 56.
    LaBrecque DR, Pesch LA. Preparation and partial characterization of hepatic regenerative stimulator substance (SS) from rat liver. J Physiol. 1975;248:273–84.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Fan QL, Huang CG, Jin Y, Feng B, Miao HN, Li WJ, Jiao BH, et al. Effects of shark hepatic stimulator substance on the function and antioxidant capacity of liver mitochondria in an animal model of acute liver injury. Acta Biochim Biophys Sin Shanghai. 2005;37:507–14.PubMedGoogle Scholar
  58. 58.
    Li F, Sun JY, Liu M, Lu WY, Wang JY, Shi JY. Sterically stable liposomes improve the therapeutic effect of hepatic stimulator substance on fulminant hepatic failure in rats. Biochem Pharmacol. 2011;82:556–65.PubMedGoogle Scholar
  59. 59.
    Li S, Tang Z, Yu H, Li W, Jiang Y, Wang Y, An W. Administration of naked plasmid encoding hepatic stimulator substance by hydrodynamic tail vein injection protects mice from hepatic failure by suppressing the mitochondrial permeability transition. J Pharmacol Exp Ther. 2011;338:750–7.PubMedGoogle Scholar
  60. 60.
    Theocharis SE, Papadimitriou LJ, Retsou ZP, Margeli AP, Ninos SS, Papadimitriou JD. Granulocyte-colony stimulating factor administration ameliorates liver regeneration in animal model of fulminant hepatic failure and encephalopathy. Dig Dis Sci. 2003;48:1797–803.PubMedGoogle Scholar
  61. 61.
    Garg V, Garg H, Khan A, Trehanpati N, Kumar A, Sharma BC, Sakhuja P, et al. Granulocyte colony-stimulating factor mobilizes CD34(+) cells and improves survival of patients with acute-on-chronic liver failure. Gastroenterology. 2012;142:505–512.e501.PubMedGoogle Scholar
  62. 62.
    Duan XZ, Liu FF, Tong JJ, Yang HZ, Chen J, Liu XY, Mao YL, et al. Granulocyte-colony stimulating factor therapy improves survival in patients with hepatitis B virus-associated acute-on-chronic liver failure. World J Gastroenterol. 2013;19:1104–10.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Huebert RC, Rakela J. Cellular therapy for liver disease. Mayo Clin Proc. 2014;89:414–24.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Glanemann M, Shi B, El-Zidy N, Gaebelein G, Kronbach Z, Neuhaus P, Nussler AK. Subcutaneous administration of epidermal growth factor: a true treatment option in case of postoperative liver failure? Int J Surg. 2009;7:200–5.PubMedGoogle Scholar
  65. 65.
    Khai NC, Takahashi T, Ushikoshi H, Nagano S, Yuge K, Esaki M, Kawai T, et al. In vivo hepatic HB-EGF gene transduction inhibits Fas-induced liver injury and induces liver regeneration in mice: a comparative study to HGF. J Hepatol. 2006;44:1046–54.PubMedGoogle Scholar
  66. 66.
    Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N Engl J Med. 2008;358:1160–74.PubMedGoogle Scholar
  67. 67.
    Li CY, Cao CZ, Xu WX, Cao MM, Yang F, Dong L, Yu M, et al. Recombinant human hepassocin stimulates proliferation of hepatocytes in vivo and improves survival in rats with fulminant hepatic failure. Gut. 2010;59:817–26.PubMedGoogle Scholar
  68. 68.
    Assy N, Spira G, Paizi M, Shenkar L, Kraizer Y, Cohen T, Neufeld G, et al. Effect of vascular endothelial growth factor on hepatic regenerative activity following partial hepatectomy in rats. J Hepatol. 1999;30:911–5.PubMedGoogle Scholar
  69. 69.
    Antoine M, Tag CG, Wirz W, Borkham-Kamphorst E, Sawitza I, Gressner AM, Kiefer P. Upregulation of pleiotrophin expression in rat hepatic stellate cells by PDGF and hypoxia: implications for its role in experimental biliary liver fibrogenesis. Biochem Biophys Res Commun. 2005;337:1153–64.PubMedGoogle Scholar
  70. 70.
    Wu JY, Li M, Zhang H. Effect of glucocorticoid treatment on the clinical outcome of patients with early-stage liver failure. Nan Fang Yi Ke Da Xue Xue Bao. 2011;31:554–6.PubMedGoogle Scholar
  71. 71.
    Mathurin P, O’Grady J, Carithers RL, Phillips M, Louvet A, Mendenhall CL, Ramond MJ, et al. Corticosteroids improve short-term survival in patients with severe alcoholic hepatitis: meta-analysis of individual patient data. Gut. 2011;60:255–60.PubMedGoogle Scholar
  72. 72.
    Wasmuth HE, Kunz D, Yagmur E, Timmer-Stranghoner A, Vidacek D, Siewert E, Bach J, et al. Patients with acute on chronic liver failure display “sepsis-like” immune paralysis. J Hepatol. 2005;42:195–201.Google Scholar
  73. 73.
    Denson JL, Maller A, Beckwith CA, Schwartz DR. A 25-year-old man with fulminant hepatic failure after treatment with corticosteroids. Chest. 2013;144:1717–9.PubMedGoogle Scholar
  74. 74.
    Dyson JK, Hudson M, McPherson S. Lesson of the month 2: severe reactivation of hepatitis B after immunosuppressive chemotherapy. Clin Med. 2014;14:551–5.Google Scholar
  75. 75.
    Di Bisceglie AM, Lok AS, Martin P, Terrault N, Perrillo RP, Hoofnagle JH. Recent US Food and Drug Administration warnings on hepatitis B reactivation with immune-suppressing and anticancer drugs: just the tip of the iceberg? Hepatology 2015;61:703–711.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Fujiwara K, Yokosuka O, Kojima H, Kanda T, Saisho H, Hirasawa H, Suzuki H. Importance of adequate immunosuppressive therapy for the recovery of patients with "life-threatening" severe exacerbation of chronic hepatitis B. World J Gastroenterol. 2005;11:1109–14.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Camerini R, Garaci E. Historical review of thymosin alpha 1 in infectious diseases. Expert Opin Biol Ther. 2015;15(Suppl 1):S117–27.PubMedGoogle Scholar
  78. 78.
    Romani L, Bistoni F, Perruccio K, Montagnoli C, Gaziano R, Bozza S, Bonifazi P, et al. Thymosin alpha1 activates dendritic cell tryptophan catabolism and establishes a regulatory environment for balance of inflammation and tolerance. Blood. 2006;108:2265–74.PubMedGoogle Scholar
  79. 79.
    Giacomini E, Severa M, Cruciani M, Etna MP, Rizzo F, Pardini M, Scagnolari C, et al. Dual effect of Thymosin alpha 1 on human monocyte-derived dendritic cell in vitro stimulated with viral and bacterial toll-like receptor agonists. Expert Opin Biol Ther. 2015;15(Suppl 1):S59–70.PubMedGoogle Scholar
  80. 80.
    Yang X, Qian F, He HY, Liu KJ, Lan YZ, Ni B, Tian Y, et al. Effect of thymosin alpha-1 on subpopulations of Th1, Th2, Th17, and regulatory T cells (Tregs) in vitro. Braz J Med Biol Res. 2012;45:25–32.PubMedGoogle Scholar
  81. 81.
    Zhang YY, Chen EQ, Yang J, Duan YR, Tang H. Treatment with lamivudine versus lamivudine and thymosin alpha-1 for e antigen-positive chronic hepatitis B patients: a meta-analysis. Virol J. 2009;6:63.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Liaw YF, Kao JH, Piratvisuth T, Chan HL, Chien RN, Liu CJ, Gane E, et al. Asian-Pacific consensus statement on the management of chronic hepatitis B: a 2012 update. Hepatol Int. 2012;6:531–61.PubMedGoogle Scholar
  83. 83.
    Kim BH, Lee YJ, Kim W, Yoon JH, Jung EU, Park SJ, Kim YJ, et al. Efficacy of thymosin alpha-1 plus peginterferon alpha-2a combination therapy compared with peginterferon alpha-2a monotherapy in HBeAg-positive chronic hepatitis B: a prospective, multicenter, randomized, open-label study. Scand J Gastroenterol. 2012;47:1048–55.PubMedGoogle Scholar
  84. 84.
    Antoniades CG, Berry PA, Wendon JA, Vergani D. The importance of immune dysfunction in determining outcome in acute liver failure. J Hepatol. 2008;49:845–61.PubMedGoogle Scholar
  85. 85.
    Tan YC, Xie F, Zhang HL, Zhu YL, Chen K, Tan HM, Hu BS, et al. Hydrogen-rich saline attenuates postoperative liver failure after major hepatectomy in rats. Clin Res Hepatol Gastroenterol. 2014;38:337–45.PubMedGoogle Scholar
  86. 86.
    Rutherford AE, Hynan LS, Borges CB, Forcione DG, Blackard JT, Lin W, Gorman AR, et al. Serum apoptosis markers in acute liver failure: a pilot study. Clin Gastroenterol Hepatol. 2007;5:1477–83.Google Scholar
  87. 87.
    Gabay C, Emery P, van Vollenhoven R, Dikranian A, Alten R, Pavelka K, Klearman M, et al. Tocilizumab monotherapy versus adalimumab monotherapy for treatment of rheumatoid arthritis (ADACTA): a randomised, double-blind, controlled phase 4 trial. Lancet. 2013;381:1541–50.PubMedGoogle Scholar
  88. 88.
    Panaccione R, Ghosh S, Middleton S, Marquez JR, Scott BB, Flint L, van Hoogstraten HJ, et al. Combination therapy with infliximab and azathioprine is superior to monotherapy with either agent in ulcerative colitis. Gastroenterology. 2014;146:392–400.e393.PubMedGoogle Scholar
  89. 89.
    Ungar B, Chowers Y, Yavzori M, Picard O, Fudim E, Har-Noy O, Kopylov U, et al. The temporal evolution of antidrug antibodies in patients with inflammatory bowel disease treated with infliximab. Gut. 2014;63:1258–64.PubMedGoogle Scholar
  90. 90.
    Sharma P, Kumar A, Sharma BC, Sarin SK. Infliximab monotherapy for severe alcoholic hepatitis and predictors of survival: an open label trial. J Hepatol. 2009;50:584–91.PubMedGoogle Scholar
  91. 91.
    Boetticher NC, Peine CJ, Kwo P, Abrams GA, Patel T, Aqel B, Boardman L, et al. A randomized, double-blinded, placebo-controlled multicenter trial of etanercept in the treatment of alcoholic hepatitis. Gastroenterology. 2008;135:1953–60.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Malik R, Mookerjee RP, Jalan R. Infection and inflammation in liver failure: two sides of the same coin. J Hepatol. 2009;51:426–9.PubMedGoogle Scholar
  93. 93.
    Bojalil R, Mata-Gonzalez MT, Sanchez-Munoz F, Yee Y, Argueta I, Bolanos L, Amezcua-Guerra LM, et al. Anti-tumor necrosis factor VNAR single domains reduce lethality and regulate underlying inflammatory response in a murine model of endotoxic shock. BMC Immunol. 2013;14:17.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Xu Y, Wang H, Bao S, Tabassam F, Cai W, Xiang X, Zhao G, et al. Amelioration of liver injury by continuously targeted intervention against TNFRp55 in rats with acute-on-chronic liver failure. PLoS One. 2013;8:e68757.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Szabo G, Csak T. Inflammasomes in liver diseases. J Hepatol. 2012;57:642–54.PubMedGoogle Scholar
  96. 96.
    Butterworth RF. The liver-brain axis in liver failure: neuroinflammation and encephalopathy. Nat Rev Gastroenterol Hepatol. 2013;10:522–8.PubMedGoogle Scholar
  97. 97.
    Sgroi A, Gonelle-Gispert C, Morel P, Baertschiger RM, Niclauss N, Mentha G, Majno P, et al. Interleukin-1 receptor antagonist modulates the early phase of liver regeneration after partial hepatectomy in mice. PLoS One. 2011;6:e25442.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Hu J, Yan D, Gao J, Xu C, Yuan Y, Zhu R, Xiang D, et al. rhIL-1Ra reduces hepatocellular apoptosis in mice with acetaminophen-induced acute liver failure. Lab Investig. 2010;90:1737–46.PubMedGoogle Scholar
  99. 99.
    Zheng YB, Zhang XH, Huang ZL, Lin CS, Lai J, Gu YR, Lin BL, et al. Amniotic-fluid-derived mesenchymal stem cells overexpressing interleukin-1 receptor antagonist improve fulminant hepatic failure. PLoS One. 2012;7:e41392.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Nam JL, Ramiro S, Gaujoux-Viala C, Takase K, Leon-Garcia M, Emery P, Gossec L, et al. Efficacy of biological disease-modifying antirheumatic drugs: a systematic literature review informing the 2013 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann Rheum Dis. 2014;73:516–28.PubMedGoogle Scholar
  101. 101.
    Aly L, Iking-Konert C, Quaas A, Benten D. Subacute liver failure following anakinra treatment for adult-onset still disease. J Rheumatol. 2013;40:1775–7.PubMedGoogle Scholar
  102. 102.
    Ishibe T, Kimura A, Ishida Y, Takayasu T, Hayashi T, Tsuneyama K, Matsushima K, et al. Reduced acetaminophen-induced liver injury in mice by genetic disruption of IL-1 receptor antagonist. Lab Investig. 2009;89:68–79.PubMedGoogle Scholar
  103. 103.
    Jin X, Zimmers TA, Perez EA, Pierce RH, Zhang Z, Koniaris LG. Paradoxical effects of short- and long-term interleukin-6 exposure on liver injury and repair. Hepatology. 2006;43:474–84.PubMedGoogle Scholar
  104. 104.
    Zhang Y, Zhang J, Korff S, Ayoob F, Vodovotz Y, Billiar TR. Delayed neutralization of interleukin 6 reduces organ injury, selectively suppresses inflammatory mediator, and partially normalizes immune dysfunction following trauma and hemorrhagic shock. Shock. 2014;42:218–27.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Alfreijat M, Habibi M, Bhatia P, Bhatia A. Severe hepatitis associated with tocilizumab in a patient with rheumatoid arthritis. Rheumatology (Oxford). 2013;52:1340–1.Google Scholar
  106. 106.
    Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol. 2009;21:317–37.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Szabo G, Billiar TR, Machida K, Crispe IN, Seki E. Toll-like receptor signaling in liver diseases. Gastroenterol Res Pract. 2010;2010:971270.PubMedGoogle Scholar
  108. 108.
    Kitazawa T, Tsujimoto T, Kawaratani H, Fukui H. Therapeutic approach to regulate innate immune response by Toll-like receptor 4 antagonist E5564 in rats with D-galactosamine-induced acute severe liver injury. J Gastroenterol Hepatol. 2009;24:1089–94.PubMedGoogle Scholar
  109. 109.
    Jiang W, Sun R, Zhou R, Wei H, Tian Z. TLR-9 activation aggravates concanavalin A-induced hepatitis via promoting accumulation and activation of liver CD4+ NKT cells. J Immunol. 2009;182:3768–74.PubMedGoogle Scholar
  110. 110.
    Bamboat ZM, Ocuin LM, Balachandran VP, Obaid H, Plitas G, DeMatteo RP. Conventional DCs reduce liver ischemia/reperfusion injury in mice via IL-10 secretion. J Clin Invest. 2010;120:559–69.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Cao QY, Chen F, Li J, Wu SS, Wang J, Chen Z. A microarray analysis of early activated pathways in concanavalin A-induced hepatitis. J Zhejiang Univ Sci B. 2010;11:366–77.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Masson MJ, Carpenter LD, Graf ML, Pohl LR. Pathogenic role of natural killer T and natural killer cells in acetaminophen-induced liver injury in mice is dependent on the presence of dimethyl sulfoxide. Hepatology. 2008;48:889–97.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Fullerton AM, Roth RA, Ganey PE. Pretreatment with TCDD exacerbates liver injury from Concanavalin a: critical role for NK cells. Toxicol Sci. 2013;136:72–85.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Zou Y, Chen T, Han M, Wang H, Yan W, Song G, Wu Z, et al. Increased killing of liver NK cells by Fas/Fas ligand and NKG2D/NKG2D ligand contributes to hepatocyte necrosis in virus-induced liver failure. J Immunol. 2010;184:466–75.Google Scholar
  115. 115.
    Wu Z, Han M, Chen T, Yan W, Ning Q. Acute liver failure: mechanisms of immune-mediated liver injury. Liver Int. 2010;30:782–94.Google Scholar
  116. 116.
    Chen Y, Wei H, Sun R, Dong Z, Zhang J, Tian Z. Increased susceptibility to liver injury in hepatitis B virus transgenic mice involves NKG2D-ligand interaction and natural killer cells. Hepatology. 2007;46:706–15.Google Scholar
  117. 117.
    Vilarinho S, Ogasawara K, Nishimura S, Lanier LL, Baron JL. Blockade of NKG2D on NKT cells prevents hepatitis and the acute immune response to hepatitis B virus. Proc Natl Acad Sci U S A. 2007;104:18187–92.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Han DW. Intestinal endotoxemia as a pathogenetic mechanism in liver failure. World J Gastroenterol. 2002;8:961–5.PubMedPubMedCentralGoogle Scholar
  119. 119.
    West MA, Heagy W. Endotoxin tolerance: a review. Crit Care Med. 2002;30:S64–73.PubMedGoogle Scholar
  120. 120.
    Chen T, Zhu L, Zhou Y, Pi B, Liu X, Deng G, Zhang R, et al. KCTD9 contributes to liver injury through NK cell activation during hepatitis B virus-induced acute-on-chronic liver failure. Clin Immunol. 2013;146:207–16.Google Scholar
  121. 121.
    Tsutsui H, Nishiguchi S. Importance of Kupffer cells in the development of acute liver injuries in mice. Int J Mol Sci. 2014;15:7711–30.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Yang Q, Liu Y, Shi Y, Zheng M, He J, Chen Z. The role of intracellular high-mobility group box 1 in the early activation of Kupffer cells and the development of Con A-induced acute liver failure. Immunobiology. 2013;218:1284–92.Google Scholar
  123. 123.
    Fisher JE, McKenzie TJ, Lillegard JB, Yu Y, Juskewitch JE, Nedredal GI, Brunn GJ, et al. Role of Kupffer cells and toll-like receptor 4 in acetaminophen-induced acute liver failure. J Surg Res. 2013;180:147–55.Google Scholar
  124. 124.
    Ye Y, Liu J, Lai Q, Zhao Q, Peng L, Xie C, Zhang G, et al. Decreases in activated CD8+ T cells in patients with severe hepatitis B are related to outcomes. Dig Dis Sci. 2015;60:136–45.PubMedGoogle Scholar
  125. 125.
    Salama AK, Hodi FS. Cytotoxic T-lymphocyte-associated antigen-4. Clin Cancer Res. 2011;17:4622–8.PubMedGoogle Scholar
  126. 126.
    Metushi IG, Hayes MA, Uetrecht J. Treatment of PD-1(−/−) mice with amodiaquine and anti-CTLA4 leads to liver injury similar to idiosyncratic liver injury in patients. Hepatology. 2015;61:1332–42.PubMedGoogle Scholar
  127. 127.
    Li ZL, Xue WJ, Tian PX, Ding XM, Tian XH, Feng XS, Hou J. Prolongation of islet allograft survival by coexpression of CTLA4Ig and CD40LIg in mice. Transplant Proc. 2007;39:3436–7.PubMedGoogle Scholar
  128. 128.
    Uchida T, Hiraga N, Imamura M, Tsuge M, Abe H, Hayes CN, Aikata H, et al. Human cytotoxic T lymphocyte-mediated acute liver failure and rescue by immunoglobulin in human hepatocyte transplant TK-NOG mice. J Virol. 2015;89:10087–96.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480:480–9.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Zhang Z, Zhang JY, Wherry EJ, Jin B, Xu B, Zou ZS, Zhang SY, et al. Dynamic programmed death 1 expression by virus-specific CD8 T cells correlates with the outcome of acute hepatitis B. Gastroenterology. 2008;134:1938–1949, 1949.e1–3.Google Scholar
  131. 131.
    Ji H, Shen X, Gao F, Ke B, Freitas MC, Uchida Y, Busuttil RW, et al. Programmed death-1/B7-H1 negative costimulation protects mouse liver against ischemia and reperfusion injury. Hepatology. 2010;52:1380–9.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Leifeld L, Trautwein C, Dumoulin FL, Manns MP, Sauerbruch T, Spengler U. Enhanced expression of CD80 (B7-1), CD86 (B7-2), and CD40 and their ligands CD28 and CD154 in fulminant hepatic failure. Am J Pathol. 1999;154:1711–20.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Urakami H, Ostanin DV, Hunig T, Grisham MB. Combination of donor-specific blood transfusion with anti-CD28 antibody synergizes to prolong graft survival in rat liver transplantation. Transplant Proc. 2006;38:3244–6.PubMedGoogle Scholar
  134. 134.
    Dhawan A, Puppi J, Hughes RD, Mitry RR. Human hepatocyte transplantation: current experience and future challenges. Nat Rev Gastroenterol Hepatol. 2010;7:288–98.PubMedGoogle Scholar
  135. 135.
    Meyburg J, Alexandrova K, Barthold M, Kafert-Kasting S, Schneider AS, Attaran M, Hoerster F, et al. Liver cell transplantation: basic investigations for safe application in infants and small children. Cell Transplant. 2009;18:777–86.PubMedGoogle Scholar
  136. 136.
    Wang F, Zhou L, Ma X, Ma W, Wang C, Lu Y, Chen Y, et al. Monitoring of intrasplenic hepatocyte transplantation for acute-on-chronic liver failure: a prospective five-year follow-up study. Transplant Proc. 2014;46:192–8.PubMedGoogle Scholar
  137. 137.
    Enosawa S, Horikawa R, Yamamoto A, Sakamoto S, Shigeta T, Nosaka S, Fujimoto J, et al. Hepatocyte transplantation using a living donor reduced graft in a baby with ornithine transcarbamylase deficiency: a novel source of hepatocytes. Liver Transpl. 2014;20:391–3.PubMedGoogle Scholar
  138. 138.
    Li ZR, Mao XH, Hu XX, Nie SD, Shi YZ, Xiang H, Yang JH, et al. Primary human hepatocyte transplantation in the therapy of hepatic failure: 2 cases report. Asian Pac J Trop Med. 2012;5:165–8.PubMedGoogle Scholar
  139. 139.
    Fisher RA, Bu D, Thompson M, Tisnado J, Prasad U, Sterling R, Posner M, et al. Defining hepatocellular chimerism in a liver failure patient bridged with hepatocyte infusion. Transplantation. 2000;69:303–7.PubMedGoogle Scholar
  140. 140.
    Bilir BM, Guinette D, Karrer F, Kumpe DA, Krysl J, Stephens J, McGavran L, et al. Hepatocyte transplantation in acute liver failure. Liver Transpl. 2000;6:32–40.PubMedGoogle Scholar
  141. 141.
    Baccarani U, Adani GL, Sanna A, Avellini C, Sainz-Barriga M, Lorenzin D, Montanaro D, et al. Portal vein thrombosis after intraportal hepatocytes transplantation in a liver transplant recipient. Transpl Int. 2005;18:750–4.PubMedGoogle Scholar
  142. 142.
    Habibullah CM, Syed IH, Qamar A, Taher-Uz Z. Human fetal hepatocyte transplantation in patients with fulminant hepatic failure. Transplantation. 1994;58:951–2.PubMedGoogle Scholar
  143. 143.
    Yokoyama T, Ohashi K, Kuge H, Kanehiro H, Iwata H, Yamato M, Nakajima Y. In vivo engineering of metabolically active hepatic tissues in a neovascularized subcutaneous cavity. Am J Transplant. 2006;6:50–9.PubMedGoogle Scholar
  144. 144.
    Allen KJ, Mifsud NA, Williamson R, Bertolino P, Hardikar W. Cell-mediated rejection results in allograft loss after liver cell transplantation. Liver Transpl. 2008;14:688–94.PubMedGoogle Scholar
  145. 145.
    Lu WY, Bird TG, Boulter L, Tsuchiya A, Cole AM, Hay T, Guest RV, et al. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat Cell Biol. 2015;17:971–83.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Bai YQ, Yang YX, Yang YG, Ding SZ, Jin FL, Cao MB, Zhang YR, et al. Outcomes of autologous bone marrow mononuclear cell transplantation in decompensated liver cirrhosis. World J Gastroenterol. 2014;20:8660–6.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Lyra AC, Soares MB, da Silva LF, Braga EL, Oliveira SA, Fortes MF, Silva AG, et al. Infusion of autologous bone marrow mononuclear cells through hepatic artery results in a short-term improvement of liver function in patients with chronic liver disease: a pilot randomized controlled study. Eur J Gastroenterol Hepatol. 2010;22:33–42.PubMedGoogle Scholar
  148. 148.
    Lyra AC, Soares MB, da Silva LF, Fortes MF, Silva AG, Mota AC, Oliveira SA, et al. Feasibility and safety of autologous bone marrow mononuclear cell transplantation in patients with advanced chronic liver disease. World J Gastroenterol. 2007;13:1067–73.PubMedPubMedCentralGoogle Scholar
  149. 149.
    Couto BG, Goldenberg RC, da Fonseca LM, Thomas J, Gutfilen B, Resende CM, Azevedo F, et al. Bone marrow mononuclear cell therapy for patients with cirrhosis: a phase 1 study. Liver Int. 2011;31:391–400.PubMedGoogle Scholar
  150. 150.
    Esch JS 2nd, Knoefel WT, Klein M, Ghodsizad A, Fuerst G, Poll LW, Piechaczek C, et al. Portal application of autologous CD133+ bone marrow cells to the liver: a novel concept to support hepatic regeneration. Stem Cells. 2005;23:463–70.Google Scholar
  151. 151.
    Burganova GR. Effectiveness of autologous hematopoietic stem cells transplantation in patients with liver cirrhosis. Eksp Klin Gastroenterol. 2012;4:91–7.Google Scholar
  152. 152.
    Salama H, Zekri AR, Zern M, Bahnassy A, Loutfy S, Shalaby S, Vigen C, et al. Autologous hematopoietic stem cell transplantation in 48 patients with end-stage chronic liver diseases. Cell Transplant. 2010;19:1475–86.PubMedGoogle Scholar
  153. 153.
    Salama H, Zekri AR, Bahnassy AA, Medhat E, Halim HA, Ahmed OS, Mohamed G, et al. Autologous CD34+ and CD133+ stem cells transplantation in patients with end stage liver disease. World J Gastroenterol. 2010;16:5297–305.PubMedPubMedCentralGoogle Scholar
  154. 154.
    El Omar R, Beroud J, Stoltz JF, Menu P, Velot E, Decot V. Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? Tissue Eng Part B Rev. 2014;20:523–44.PubMedGoogle Scholar
  155. 155.
    Hass R, Kasper C, Bohm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. 2011;9:12.PubMedPubMedCentralGoogle Scholar
  156. 156.
    Li Q, Zhou X, Shi Y, Li J, Zheng L, Cui L, Zhang J, et al. In vivo tracking and comparison of the therapeutic effects of MSCs and HSCs for liver injury. PLoS One. 2013;8:e62363.PubMedPubMedCentralGoogle Scholar
  157. 157.
    Jang YO, Kim YJ, Baik SK, Kim MY, Eom YW, Cho MY, Park HJ, et al. Histological improvement following administration of autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: a pilot study. Liver Int. 2014;34:33–41.PubMedGoogle Scholar
  158. 158.
    Xu L, Gong Y, Wang B, Shi K, Hou Y, Wang L, Lin Z, et al. Randomized trial of autologous bone marrow mesenchymal stem cells transplantation for hepatitis B virus cirrhosis: regulation of Treg/Th17 cells. J Gastroenterol Hepatol. 2014;29:1620–8.PubMedGoogle Scholar
  159. 159.
    Peng L, Xie DY, Lin BL, Liu J, Zhu HP, Xie C, Zheng YB, et al. Autologous bone marrow mesenchymal stem cell transplantation in liver failure patients caused by hepatitis B: short-term and long-term outcomes. Hepatology. 2011;54:820–8.PubMedGoogle Scholar
  160. 160.
    Salama H, Zekri AR, Medhat E, Al Alim SA, Ahmed OS, Bahnassy AA, Lotfy MM, et al. Peripheral vein infusion of autologous mesenchymal stem cells in Egyptian HCV-positive patients with end-stage liver disease. Stem Cell Res Ther. 2014;5:70.PubMedPubMedCentralGoogle Scholar
  161. 161.
    Mohamadnejad M, Alimoghaddam K, Bagheri M, Ashrafi M, Abdollahzadeh L, Akhlaghpoor S, Bashtar M, et al. Randomized placebo-controlled trial of mesenchymal stem cell transplantation in decompensated cirrhosis. Liver Int. 2013;33:1490–6.PubMedGoogle Scholar
  162. 162.
    Zhang Z, Lin H, Shi M, Xu R, Fu J, Lv J, Chen L, et al. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. J Gastroenterol Hepatol. 2012;27(Suppl 2):112–20.PubMedGoogle Scholar
  163. 163.
    Shi M, Zhang Z, Xu R, Lin H, Fu J, Zou Z, Zhang A, et al. Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. Stem Cells Transl Med. 2012;1:725–31.PubMedPubMedCentralGoogle Scholar
  164. 164.
    Parekkadan B, van Poll D, Suganuma K, Carter EA, Berthiaume F, Tilles AW, Yarmush ML. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One. 2007;2:e941.PubMedPubMedCentralGoogle Scholar
  165. 165.
    Wang H, Zhao T, Xu F, Li Y, Wu M, Zhu D, Cong X, et al. How important is differentiation in the therapeutic effect of mesenchymal stromal cells in liver disease? Cytotherapy. 2014;16:309–18.PubMedGoogle Scholar
  166. 166.
    di Bonzo LV, Ferrero I, Cravanzola C, Mareschi K, Rustichell D, Novo E, Sanavio F, et al. Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine: engraftment and hepatocyte differentiation versus profibrogenic potential. Gut. 2008;57:223–31.PubMedGoogle Scholar
  167. 167.
    El-Ansary M, Abdel-Aziz I, Mogawer S, Abdel-Hamid S, Hammam O, Teaema S, Wahdan M. Phase II trial: undifferentiated versus differentiated autologous mesenchymal stem cells transplantation in Egyptian patients with HCV induced liver cirrhosis. Stem Cell Rev. 2012;8:972–81.PubMedGoogle Scholar
  168. 168.
    Pan Q, Fouraschen SM, de Ruiter PE, Dinjens WN, Kwekkeboom J, Tilanus HW, van der Laan LJ. Detection of spontaneous tumorigenic transformation during culture expansion of human mesenchymal stromal cells. Exp Biol Med (Maywood). 2014;239:105–15.Google Scholar
  169. 169.
    Wobus AM, Boheler KR. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev. 2005;85:635–78.PubMedGoogle Scholar
  170. 170.
    Kahan B, Magliocca J, Merriam F, Treff N, Budde M, Nelson J, Browning V, et al. Elimination of tumorigenic stem cells from differentiated progeny and selection of definitive endoderm reveals a Pdx1+ foregut endoderm stem cell lineage. Stem Cell Res. 2011;6:143–57.PubMedGoogle Scholar
  171. 171.
    He ZY, Deng L, Li YF, Xiang D, Hu JK, Chen YX, Wang MJ, et al. Murine embryonic stem cell-derived hepatocytes correct metabolic liver disease after serial liver repopulation. Int J Biochem Cell Biol. 2012;44:648–58.PubMedPubMedCentralGoogle Scholar
  172. 172.
    Chan KM, Fu YH, Wu TJ, Hsu PY, Lee WC. Hepatic stellate cells promote the differentiation of embryonic stem cell-derived definitive endodermal cells into hepatic progenitor cells. Hepatol Res. 2013;43:648–57.PubMedGoogle Scholar
  173. 173.
    Woo DH, Kim SK, Lim HJ, Heo J, Park HS, Kang GY, Kim SE, et al. Direct and indirect contribution of human embryonic stem cell-derived hepatocyte-like cells to liver repair in mice. Gastroenterology. 2012;142:602–11.PubMedGoogle Scholar
  174. 174.
    Karabekian Z, Ding H, Stybayeva G, Ivanova I, Muselimyan N, Haque A, Toma I, et al. HLA class I depleted hESC as a source of hypoimmunogenic cells for tissue engineering applications. Tissue Eng Part A. 2015;21:2559–71.PubMedPubMedCentralGoogle Scholar
  175. 175.
    Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, Hubschman JP, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385:509–16.PubMedGoogle Scholar
  176. 176.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.PubMedGoogle Scholar
  177. 177.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.PubMedGoogle Scholar
  178. 178.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.PubMedPubMedCentralGoogle Scholar
  179. 179.
    Semi K, Matsuda Y, Ohnishi K, Yamada Y. Cellular reprogramming and cancer development. Int J Cancer. 2013;132:1240–8.PubMedGoogle Scholar
  180. 180.
    Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature. 2011;471:68–73.PubMedPubMedCentralGoogle Scholar
  181. 181.
    Ruiz S, Diep D, Gore A, Panopoulos AD, Montserrat N, Plongthongkum N, Kumar S, et al. Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2012;109:16196–201.PubMedPubMedCentralGoogle Scholar
  182. 182.
    Li W, Xiang AP. Safeguarding clinical translation of pluripotent stem cells with suicide genes. Organogenesis. 2013;9:34–9.PubMedPubMedCentralGoogle Scholar
  183. 183.
    Lin T, Wu S. Reprogramming with small molecules instead of exogenous transcription factors. Stem Cells Int. 2015;2015:794632.PubMedPubMedCentralGoogle Scholar
  184. 184.
    Shan J, Schwartz RE, Ross NT, Logan DJ, Thomas D, Duncan SA, North TE, et al. Identification of small molecules for human hepatocyte expansion and iPS differentiation. Nat Chem Biol. 2013;9:514–20.PubMedPubMedCentralGoogle Scholar
  185. 185.
    Jozefczuk J, Prigione A, Chavez L, Adjaye J. Comparative analysis of human embryonic stem cell and induced pluripotent stem cell-derived hepatocyte-like cells reveals current drawbacks and possible strategies for improved differentiation. Stem Cells Dev. 2011;20:1259–75.PubMedGoogle Scholar
  186. 186.
    Baxter M, Withey S, Harrison S, Segeritz CP, Zhang F, Atkinson-Dell R, Rowe C, et al. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes. J Hepatol. 2015;62:581–9.PubMedPubMedCentralGoogle Scholar
  187. 187.
    Yanagida A, Ito K, Chikada H, Nakauchi H, Kamiya A. An in vitro expansion system for generation of human iPS cell-derived hepatic progenitor-like cells exhibiting a bipotent differentiation potential. PLoS One. 2013;8:e67541.PubMedPubMedCentralGoogle Scholar
  188. 188.
    Chien Y, Chang YL, Li HY, Larsson M, Wu WW, Chien CS, Wang CY, et al. Synergistic effects of carboxymethyl-hexanoyl chitosan, cationic polyurethane-short branch PEI in miR122 gene delivery: accelerated differentiation of iPSCs into mature hepatocyte-like cells and improved stem cell therapy in a hepatic failure model. Acta Biomater. 2015;13:228–44.PubMedGoogle Scholar
  189. 189.
    Chen YF, Tseng CY, Wang HW, Kuo HC, Yang VW, Lee OK. Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol. Hepatology. 2012;55:1193–203.PubMedPubMedCentralGoogle Scholar
  190. 190.
    Espejel S, Roll GR, McLaughlin KJ, Lee AY, Zhang JY, Laird DJ, Okita K, et al. Induced pluripotent stem cell-derived hepatocytes have the functional and proliferative capabilities needed for liver regeneration in mice. J Clin Invest. 2010;120:3120–6.PubMedPubMedCentralGoogle Scholar
  191. 191.
    Sgroi A, Mai G, Morel P, Baertschiger RM, Gonelle-Gispert C, Serre-Beinier V, Buhler LH. Transplantation of encapsulated hepatocytes during acute liver failure improves survival without stimulating native liver regeneration. Cell Transplant. 2011;20:1791–803.PubMedGoogle Scholar
  192. 192.
    Ramboer E, De Craene B, De Kock J, Vanhaecke T, Berx G, Rogiers V, Vinken M. Strategies for immortalization of primary hepatocytes. J Hepatol. 2014;61:925–43.PubMedGoogle Scholar
  193. 193.
    Kawashita Y, Guha C, Moitra R, Wang X, Fox IJ, Roy-Chowdhury J, Roy-Chowdhury N. Hepatic repopulation with stably transduced conditionally immortalized hepatocytes in the Gunn rat. J Hepatol. 2008;49:99–106.PubMedGoogle Scholar
  194. 194.
    Soltys KA, Soto-Gutierrez A, Nagaya M, Baskin KM, Deutsch M, Ito R, Shneider BL, et al. Barriers to the successful treatment of liver disease by hepatocyte transplantation. J Hepatol. 2010;53:769–74.PubMedPubMedCentralGoogle Scholar
  195. 195.
    Zhao X, Tang ZY, Klumpp B, Wolff-Vorbeck G, Barth H, Levy S, von Weizsacker F, et al. Primary hepatocytes of Tupaia belangeri as a potential model for hepatitis C virus infection. J Clin Invest. 2002;109:221–32.PubMedPubMedCentralGoogle Scholar
  196. 196.
    Boksa M, Zeyland J, Slomski R, Lipinski D. Immune modulation in xenotransplantation. Arch Immunol Ther Exp (Warsz). 2015;63:181–92.Google Scholar
  197. 197.
    Starzl TE, Fung J, Tzakis A, Todo S, Demetris AJ, Marino IR, Doyle H, et al. Baboon-to-human liver transplantation. Lancet. 1993;341:65–71.PubMedPubMedCentralGoogle Scholar
  198. 198.
    Nagata H, Nishitai R, Shirota C, Zhang JL, Koch CA, Cai J, Awwad M, et al. Prolonged survival of porcine hepatocytes in cynomolgus monkeys. Gastroenterology. 2007;132:321–9.PubMedGoogle Scholar
  199. 199.
    Ekser B, Gridelli B, Veroux M, Cooper DK. Clinical pig liver xenotransplantation: how far do we have to go? Xenotransplantation. 2011;18:158–67.PubMedGoogle Scholar
  200. 200.
    Yang L, Guell M, Niu D, George H, Lesha E, Grishin D, Aach J, et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science. 2015;350:1101–4.PubMedGoogle Scholar
  201. 201.
    Gridelli B, Vizzini G, Pietrosi G, Luca A, Spada M, Gruttadauria S, Cintorino D, et al. Efficient human fetal liver cell isolation protocol based on vascular perfusion for liver cell-based therapy and case report on cell transplantation. Liver Transpl. 2012;18:226–37.PubMedGoogle Scholar
  202. 202.
    Chinnici CM, Timoneri F, Amico G, Pietrosi G, Vizzini G, Spada M, Pagano D, et al. Characterization of liver-specific functions of human fetal hepatocytes in culture. Cell Transplant. 2015;24:1139–53.PubMedGoogle Scholar
  203. 203.
    Pietrosi G, Vizzini G, Gerlach J, Chinnici C, Luca A, Amico G, D’Amato M, et al. Phases I-II matched case-control study of human Fetal liver cell transplantation for treatment of chronic liver disease. Cell Transplant. 2015;24:1627–38.PubMedGoogle Scholar
  204. 204.
    Kamimura R, Ishii T, Sasaki N, Kajiwara M, Machimoto T, Saito M, Kohno K, et al. Comparative study of transplantation of hepatocytes at various differentiation stages into mice with lethal liver damage. Cell Transplant. 2012;21:2351–62.PubMedGoogle Scholar
  205. 205.
    Kim SR, Kubo T, Kuroda Y, Hojyo M, Matsuo T, Miyajima A, Usami M, et al. Comparative metabolome analysis of cultured fetal and adult hepatocytes in humans. J Toxicol Sci. 2014;39:717–23.PubMedGoogle Scholar
  206. 206.
    Herrera MB, Fonsato V, Bruno S, Grange C, Gilbo N, Romagnoli R, Tetta C, et al. Human liver stem cells improve liver injury in a model of fulminant liver failure. Hepatology. 2013;57:311–9.PubMedGoogle Scholar
  207. 207.
    Ono Y, Kawachi S, Hayashida T, Wakui M, Tanabe M, Itano O, Obara H, et al. The influence of donor age on liver regeneration and hepatic progenitor cell populations. Surgery. 2011;150:154–61.PubMedGoogle Scholar
  208. 208.
    Khan AA, Parveen N, Mahaboob VS, Rajendraprasad A, Ravindraprakash HR, Venkateswarlu J, Rao P, et al. Management of hyperbilirubinemia in biliary atresia by hepatic progenitor cell transplantation through hepatic artery: a case report. Transplant Proc. 2008;40:1153–5.PubMedGoogle Scholar
  209. 209.
    Khan AA, Shaik MV, Parveen N, Rajendraprasad A, Aleem MA, Habeeb MA, Srinivas G, et al. Human fetal liver-derived stem cell transplantation as supportive modality in the management of end-stage decompensated liver cirrhosis. Cell Transplant. 2010;19:409–18.PubMedGoogle Scholar
  210. 210.
    Kuramitsu K, Sverdlov DY, Liu SB, Csizmadia E, Burkly L, Schuppan D, Hanto DW, et al. Failure of fibrotic liver regeneration in mice is linked to a severe fibrogenic response driven by hepatic progenitor cell activation. Am J Pathol. 2013;183:182–94.PubMedPubMedCentralGoogle Scholar
  211. 211.
    Espanol-Suner R, Carpentier R, Van Hul N, Legry V, Achouri Y, Cordi S, Jacquemin P, et al. Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice. Gastroenterology. 2012;143:1564–1575.e7.PubMedGoogle Scholar
  212. 212.
    Katoonizadeh A, Nevens F, Verslype C, Pirenne J, Roskams T. Liver regeneration in acute severe liver impairment: a clinicopathological correlation study. Liver Int. 2006;26:1225–33.PubMedGoogle Scholar
  213. 213.
    Rodrigo-Torres D, Affo S, Coll M, Morales-Ibanez O, Millan C, Blaya D, Alvarez-Guaita A, et al. The biliary epithelium gives rise to liver progenitor cells. Hepatology. 2014;60:1367–77.PubMedPubMedCentralGoogle Scholar
  214. 214.
    Dianat N, Steichen C, Vallier L, Weber A, Dubart-Kupperschmitt A. Human pluripotent stem cells for modelling human liver diseases and cell therapy. Curr Gene Ther. 2013;13:120–32.PubMedPubMedCentralGoogle Scholar
  215. 215.
    Huang P, He Z, Ji S, Sun H, Xiang D, Liu C, Hu Y, et al. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature. 2011;475:386–9.PubMedGoogle Scholar
  216. 216.
    Sekiya S, Suzuki A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature. 2011;475:390–3.PubMedGoogle Scholar
  217. 217.
    Simeonov KP, Uppal H. Direct reprogramming of human fibroblasts to hepatocyte-like cells by synthetic modified mRNAs. PLoS One. 2014;9:e100134.PubMedPubMedCentralGoogle Scholar
  218. 218.
    Li LJ. State of the art: the diagnosis and treatment of liver failure. Zhonghua Gan Zang Bing Za Zhi. 2010;18(11):801–2.PubMedGoogle Scholar
  219. 219.
    Li LJ, Zhang YM, Liu XL, Du WB, Huang JR, Yang Q, Xu XW, Chen YM. Artificial liver support system in China: a review over the last 30 years. Ther Apher Dial. 2006;10(2):160–7.PubMedGoogle Scholar
  220. 220.
    Zhou N, Li J, Zhang Y, Lu J, Chen E, Du W, Wang J, Pan X, Zhu D, Yang Y, et al. Efficacy of coupled low-volume plasma exchange with plasma filtration adsorption in treating pigs with acute liver failure: a randomised study. J Hepatol. 2015;63(2):378–87.PubMedGoogle Scholar
  221. 221.
    Bellomo R, Tetta C, Ronco C. Coupled plasma filtration adsorption. Intensive Care Med. 2003;29(8):1222–8.PubMedGoogle Scholar
  222. 222.
    Nalesso F. Plasma filtration adsorption dialysis (PFAD): a new technology for blood purification. Int J Artif Organs. 2005;28(7):731–8.PubMedGoogle Scholar
  223. 223.
    Mao HJ, Yu S, Yu XB, Zhang B, Zhang L, Xu XR, Wang XY, Xing CY. Effects of coupled plasma filtration adsorption on immune function of patients with multiple organ dysfunction syndrome. Int J Artif Organs. 2009;32(1):31–8.PubMedGoogle Scholar
  224. 224.
    Livigni S, Bertolini G, Rossi C, Ferrari F, Giardino M, Pozzato M, Remuzzi G. GiVi TIGIplVdIiTIiaicnoIICu: efficacy of coupled plasma filtration adsorption (CPFA) in patients with septic shock: a multicenter randomised controlled clinical trial. BMJ Open. 2014;4(1):e003536.PubMedPubMedCentralGoogle Scholar
  225. 225.
    Maggi U, Nita G, Gatti S, Antonelli B, Paolo R, Como G, Messa P, Rossi G. Hyperbilirubinemia after liver transplantation: the role of coupled plasma filtration adsorption. Transplant Proc. 2013;45(7):2715–7.PubMedGoogle Scholar
  226. 226.
    Li L, editor. Artificial liver. Hangzhou, Zhejiang University Press; 2012. ISBN: 9787308106481 (in Chinese)Google Scholar
  227. 227.
    Stange J, Ramlow W, Mitzner S, Schmidt R, Klinkmann H. Dialysis against a recycled albumin solution enables the removal of albumin-bound toxins. Artif Organs. 1993;17(9):809–13.PubMedGoogle Scholar
  228. 228.
    Hassanein T, Blei AT, Perry W, Hilsabeck R, Stange J, Larsen FS, Brown RS Jr, Caldwell S, McGuire B, Nevens F, et al. Performance of the hepatic encephalopathy scoring algorithm in a clinical trial of patients with cirrhosis and severe hepatic encephalopathy. Am J Gastroenterol. 2009;104(6):1392–400.PubMedGoogle Scholar
  229. 229.
    Mitzner SR, Stange J, Klammt S, Peszynski P, Schmidt R, Noldge-Schomburg G. Extracorporeal detoxification using the molecular adsorbent recirculating system for critically ill patients with liver failure. J Am Soc Nephrol. 2001;12(Suppl 17):S75–82.PubMedGoogle Scholar
  230. 230.
    Hassanein TI, Tofteng F, Brown RS Jr, McGuire B, Lynch P, Mehta R, Larsen FS, Gornbein J, Stange J, Blei AT. Randomized controlled study of extracorporeal albumin dialysis for hepatic encephalopathy in advanced cirrhosis. Hepatology. 2007;46(6):1853–62.PubMedGoogle Scholar
  231. 231.
    Heemann U, Treichel U, Loock J, Philipp T, Gerken G, Malago M, Klammt S, Loehr M, Liebe S, Mitzner S, et al. Albumin dialysis in cirrhosis with superimposed acute liver injury: a prospective, controlled study. Hepatology. 2002;36(4 Pt 1):949–58.PubMedGoogle Scholar
  232. 232.
    Hetz H, Faybik P, Berlakovich G, Baker A, Bacher A, Burghuber C, Sandner SE, Steltzer H, Krenn CG. Molecular adsorbent recirculating system in patients with early allograft dysfunction after liver transplantation: a pilot study. Liver Transpl. 2006;12(9):1357–64.PubMedGoogle Scholar
  233. 233.
    Tsipotis E, Shuja A, Jaber BL. Albumin dialysis for liver failure: a systematic review. Adv Chronic Kidney Dis. 2015;22(5):382–90.PubMedGoogle Scholar
  234. 234.
    Saliba F, Camus C, Durand F, Mathurin P, Letierce A, Delafosse B, Barange K, Perrigault PF, Belnard M, Ichai P, et al. Albumin dialysis with a noncell artificial liver support device in patients with acute liver failure: a randomized, controlled trial. Ann Intern Med. 2013;159(8):522–31.PubMedGoogle Scholar
  235. 235.
    Rifai K, Ernst T, Kretschmer U, Bahr MJ, Schneider A, Hafer C, Haller H, Manns MP, Fliser D. Prometheus—a new extracorporeal system for the treatment of liver failure. J Hepatol. 2003;39(6):984–90.PubMedGoogle Scholar
  236. 236.
    Kribben A, Gerken G, Haag S, Herget-Rosenthal S, Treichel U, Betz C, Sarrazin C, Hoste E, Van Vlierberghe H, Escorsell A, et al. Effects of fractionated plasma separation and adsorption on survival in patients with acute-on-chronic liver failure. Gastroenterology. 2012;142(4):782–789.e3.PubMedGoogle Scholar
  237. 237.
    Seige M, Kreymann B, Jeschke B, Schweigart U, Kopp KF, Classen M. Long-term treatment of patients with acute exacerbation of chronic liver failure by albumin dialysis. Transplant Proc. 1999;31(1–2):1371–5.PubMedGoogle Scholar
  238. 238.
    Kortgen A, Rauchfuss F, Gotz M, Settmacher U, Bauer M, Sponholz C. Albumin dialysis in liver failure: comparison of molecular adsorbent recirculating system and single pass albumin dialysis—a retrospective analysis. Ther Apher Dial. 2009;13(5):419–25.PubMedGoogle Scholar
  239. 239.
    Wauters J, Wilmer A. Albumin dialysis: current practice and future options. Liver Int. 2011;31(Suppl 3):9–12.PubMedGoogle Scholar
  240. 240.
    Banares R, Nevens F, Larsen FS, Jalan R, Albillos A, Dollinger M, Saliba F, Sauerbruch T, Klammt S, Ockenga J, et al. Extracorporeal albumin dialysis with the molecular adsorbent recirculating system in acute-on-chronic liver failure: the RELIEF trial. Hepatology. 2013;57(3):1153–62.PubMedGoogle Scholar
  241. 241.
    Li L. Artificial liver. 2nd ed. Hangzhou: Zhejiang University Press; 2012.Google Scholar
  242. 242.
    Ellis AJ, Hughes RD, Wendon JA, Dunne J, Langley PG, Kelly JH, Gislason GT, Sussman NL, Williams R. Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure. Hepatology. 1996;24(6):1446–51.PubMedGoogle Scholar
  243. 243.
    Mazariegos GV, Kramer DJ, Lopez RC, Shakil AO, Rosenbloom AJ, Devera M, Giraldo M, Grogan TA, Zhu Y, Fulmer ML, et al. Safety observations in phase I clinical evaluation of the Excorp Medical Bioartificial Liver Support System after the first four patients. ASAIO J. 2001;47(5):471–5.PubMedGoogle Scholar
  244. 244.
    Morsiani E, Pazzi P, Puviani AC, Brogli M, Valieri L, Gorini P, Scoletta P, Marangoni E, Ragazzi R, Azzena G, et al. Early experiences with a porcine hepatocyte-based bioartificial liver in acute hepatic failure patients. Int J Artif Organs. 2002;25(3):192–202.PubMedGoogle Scholar
  245. 245.
    Qian Y, Lanjuan L, Jianrong H, Jun L, Hongcui C, Suzhen F, Xia Y, Shuhong Y. Study of severe hepatitis treated with a hybrid artificial liver support system. Int J Artif Organs. 2003;26(6):507–13.PubMedGoogle Scholar
  246. 246.
    Zheng S, Wu J, Yu F, Wang Y, Chen L, Cui D, Xie G, Yang X, Chen X, Zhang W, et al. Elevation of creatine kinase is linked to disease severity and predicts fatal outcomes in H7N9 infection. Clin Chem Lab Med. 2017;55(8):e163–6.PubMedGoogle Scholar
  247. 247.
    Demetriou AA, Brown RS, Jr., Busuttil RW, Fair J, McGuire BM, Rosenthal P, Am Esch JS, 2nd, Lerut J, Nyberg SL, Salizzoni M et al: Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann Surg 2004, 239(5):660–667.; discussion 667–670.PubMedPubMedCentralGoogle Scholar
  248. 248.
    Sauer IM, Zeilinger K, Pless G, Kardassis D, Theruvath T, Pascher A, Goetz M, Neuhaus P, Gerlach JC. Extracorporeal liver support based on primary human liver cells and albumin dialysis—treatment of a patient with primary graft non-function. J Hepatol. 2003;39(4):649–53.PubMedGoogle Scholar
  249. 249.
    van de Kerkhove MP, Di Florio E, Scuderi V, Mancini A, Belli A, Bracco A, Dauri M, Tisone G, Di Nicuolo G, Amoroso P, et al. Phase I clinical trial with the AMC-bioartificial liver. Int J Artif Organs. 2002;25(10):950–9.PubMedGoogle Scholar
  250. 250.
    Li L. Organization Committee of 13th Asia-Pacific Congress of Clinical Microbiology and Infection Consensus Guidelines for diagnosis and treatment of liver failure. Hepatobiliary Pancreat Dis Int. 2013;12(4):346–54.Google Scholar
  251. 251.
    Frimmel S, Schipper J, Henschel J, Yu TT, Mitzner SR, Koball S. First description of single-pass albumin dialysis combined with cytokine adsorption in fulminant liver failure and hemophagocytic syndrome resulting from generalized herpes simplex virus 1 infection. Liver Transpl. 2014;20(12):1523–4.PubMedGoogle Scholar
  252. 252.
    Kono K, Toda S, Hora K, Kiyosawa K. Direct hemoperfusion with a beta2-microglobulin-selective adsorbent column eliminates inflammatory cytokines and improves pulmonary oxygenation. Ther Apher Dial. 2009;13(1):27–33.PubMedGoogle Scholar
  253. 253.
    Zagli G, Bonizzoli M, Spina R, Cianchi G, Pasquini A, Anichini V, Matano S, Tarantini F, Di Filippo A, Maggi E, et al. Effects of hemoperfusion with an immobilized polymyxin-B fiber column on cytokine plasma levels in patients with abdominal sepsis. Minerva Anestesiol. 2010;76(6):405–12.PubMedGoogle Scholar
  254. 254.
    Oishi K, Mimura-Kimura Y, Miyasho T, Aoe K, Ogata Y, Katayama H, Murata Y, Ueoka H, Matsumoto T, Mimura Y. Association between cytokine removal by polymyxin B hemoperfusion and improved pulmonary oxygenation in patients with acute exacerbation of idiopathic pulmonary fibrosis. Cytokine. 2013;61(1):84–9.PubMedGoogle Scholar
  255. 255.
    Jeon H, Lee SG. Living donor liver transplantation. Curr Opin Organ Transplant. 2010;15(3):283–7.PubMedGoogle Scholar
  256. 256.
    Cesaretti M, Dioguardi Burgio M, Zarzavadjian Le Bian A. Abdominal emergencies after liver transplantation: presentation and surgical management. Clin Transpl. 2017;31:13102.Google Scholar
  257. 257.
    Li H, Chen HS, Nyberg SL. Extracorporeal liver support and liver transplant for patients with acute-on-chronic liver failure. Semin Liver Dis. 2016;36(2):153–60.PubMedGoogle Scholar
  258. 258.
    Kok B, Ewasiuk A, Karvellas CJ. Liver transplant in acute-on-chronic liver failure: evaluating the impact of organ dysfunction. Liver Int. 2017;37(5):651–2.PubMedGoogle Scholar
  259. 259.
    Chen K, Cao X, Zheng Y, Xu M, Peng J. Comparative study of the MELD-Na and Child–Turcotte–Pugh scores as short-term prognostic indicators of acute-on-chronic hepatitis B liver failure. Zhonghua Gan Zang Bing Za Zhi. 2014;22(11):801–5.PubMedGoogle Scholar
  260. 260.
    Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg. 1973;60(8):646–9.PubMedGoogle Scholar
  261. 261.
    Leise MD, Kim WR, Kremers WK, Larson JJ, Benson JT, Therneau TM. A revised model for end-stage liver disease optimizes prediction of mortality among patients awaiting liver transplantation. Gastroenterology. 2011;140(7):1952–60.PubMedPubMedCentralGoogle Scholar
  262. 262.
    Núñez-Ramos R, Montoro S, Bellusci M, Del Fresno-Valencia MR, Germán-Díaz M, Urruzuno P, Medina E, Manzanares J. Acute liver failure: outcome and value of pediatric end-stage liver disease score in pediatric cases. Pediatr Emerg Care. 2018;34:409–12.PubMedGoogle Scholar
  263. 263.
    Mallet M, Rudler M, Thabut D. Variceal bleeding in cirrhotic patients. Gastroenterol Rep (Oxf). 2017;5(3):185–92.Google Scholar
  264. 264.
    Babu R, Sethi P, Surendran S, Dhar P, Gopalakrishnan U, Balakrishnan D, Menon RN, Sivasankarapillai Thankamonyamma B, Othiyil Vayoth S, Thillai M. A new score to predict recipient mortality from preoperative donor and recipient characteristics in living donor liver transplantation (DORMAT score). Ann Transplant. 2017;22:499–506.PubMedGoogle Scholar
  265. 265.
    Wang H, Jiang W, Zhou Z, Long J, Li W, Fan ST. Liver transplantation in mainland China: the overview of CLTR 2011 annual scientific report. Hepatobiliary Surg Nutr. 2013;2(4):188–97.PubMedPubMedCentralGoogle Scholar
  266. 266.
    Cortes M, Vilca-Melendez H, Heaton N. The use of temporary portocaval shunt as a technical aid in auxiliary orthotopic liver transplantation. Liver Transpl. 2016;22(11):1607–9.PubMedGoogle Scholar
  267. 267.
    Bismuth H. Current status of auxiliary partial orthotopic liver transplantation for acute liver failure. Liver Transpl. 2017;23(5):710.PubMedGoogle Scholar
  268. 268.
    Hessheimer AJ, Nacif L, Flores Villalba E, Fondevila C. Liver transplantation for acute liver failure. Cir Esp. 2017;95(4):181–9.PubMedGoogle Scholar
  269. 269.
    Wadhawan M, Gupta S, Goyal N, Taneja S, Kumar A. Living related liver transplantation for hepatitis B-related liver disease without hepatitis B immune globulin prophylaxis. Liver Transpl. 2013;19(9):1030–5.PubMedGoogle Scholar

Copyright information

© Springer Nature B.V. and Huazhong University of Science and Technology Press 2019

Authors and Affiliations

  • Yu-Ming Wang
    • 1
  • Ke Li
    • 2
  • Xiao-Guang Dou
    • 3
  • Han Bai
    • 3
  • Xi-Ping Zhao
    • 4
  • Xiong Ma
    • 5
  • Lan-Juan Li
    • 6
    Email author
  • Zhi-Shui Chen
    • 4
  • Yuan-Cheng Huang
    • 4
  1. 1.Southwest HospitalThe First Hospital Affiliated To AMUChongqingChina
  2. 2.Beijing 302 HospitalBeijingChina
  3. 3.Shengjing Hospital of China Medical UniversityLiaoningChina
  4. 4.Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  5. 5.Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
  6. 6.The First Affiliated HospitalZhejiang UniversityZhejiangChina

Personalised recommendations