Main Complications of AECHB and Severe Hepatitis B (Liver Failure)

  • Jian-Xin Song
  • Lin Zhu
  • Chuan-Long Zhu
  • Jin-Hua Hu
  • Zi-Jian Sun
  • Xiang Xu
  • Min-You Xin
  • Qiong-Fang Zhang
  • Da-Zhi Zhang
  • Jia Shang
  • Jia-Quan Huang
  • Dong Xu


This chapter describes the clinical features, and diagnosis of complications in AECHB including secondary bacterial infections, coagulation disorder, water electrolyte disorder, hepatorenal syndrome, hepatic encephalopathy, hepatopulmonary syndrome and endotoxemia
  1. 1.

    Patients with severe hepatitis have impaired immunity and are therefore vulnerable to all kinds of infections. After infection, these patients may experience shock, DIC and multiple organ failure, all of which seriously affect their prognosis and are major causes of death. Concurrent infections consist primarily of infections of the lungs, intestines, biliary tract, and urinary tract, as well as spontaneous bacterial peritonitis and sepsis.

  2. 2.

    Severe hepatitis may reduce the synthesis of coagulation factors and enhance their dysfunction and increase anticoagulants and platelet abnormalities, leading to coagulopathy. Infection, hepatorenal syndrome and complications can further aggravate coagulopathy, resulting in DIC and seriously affecting patient prognosis.

  3. 3.

    Hepatorenal syndrome, which is characterized by renal failure, hemodynamic changes in arterial circulation and abnormalities in the endogenous vascular system, is a common clinical complication of end-stage liver disease, and one of the important indicators for the prognosis of patients with severe hepatitis.

  4. 4.

    Water electrolyte disorder (water retention, hyponatremia, hypokalemia, hyperkalaemia) and acid-base imbalance are common in patients with severe hepatitis. These internal environment disorders can lead to exacerbation and complication of the illness.

  5. 5.

    Hepatic encephalopathy is a neurological and psychiatric anomaly syndrome based on metabolic disorder, and an important prognostic indicator for patients with severe hepatitis.

  6. 6.

    The hepatopulmonary syndrome is an important vascular complication in lungs due to systemic hypoxemia in patients with cirrhosis and portal hypertension. The majority of patients with HPS are asymptomatic. Long-term oxygen therapy remains the most frequently recommended therapy for symptoms in patients with severe hypoxemia.

  7. 7.

    Endotoxemia, an important complication of severe hepatitis, is not only a second hit to the liver, but also leads to other complications including SIRS and MODS.



  1. 1.
    Bajaj JS, O’Leary JG, Reddy KR, Wong F, Biggins SW, Patton H, Fallon MB, Garcia-Tsao G, Maliakkal B, Malik R, Subramanian RM, Thacker LR, Kamath PS, North American Consortium For The Study Of End-Stage Liver Disease N. Survival in infection-related acute-on-chronic liver failure is defined by extrahepatic organ failures. Hepatology. 2014;60:250–6.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Zhang Z, Lu J, Liu M, Wang Y, Qu G, Li H, Wang J, Pang Y, Liu C, Zhao Y. Genotyping and molecular characteristics of multidrug-resistant Mycobacterium tuberculosis isolates from China. J Infect. 2015;70:335–45.PubMedGoogle Scholar
  3. 3.
    Godbole G, Shanmugam N, Dhawan A, Verma A. Infectious complications in pediatric acute liver failure. J Pediatr Gastroenterol Nutr. 2011;53:320–5.PubMedGoogle Scholar
  4. 4.
    Bilzer M, Roggel F, Gerbes AL. Role of Kupffer cells in host defense and liver disease. Liver Int. 2006;26:1175–86.PubMedGoogle Scholar
  5. 5.
    Acharya SK, Dasarathy S, Irshad M. Prospective study of plasma fibronectin in fulminant hepatitis: association with infection and mortality. J Hepatol. 1995;23:8–13.PubMedGoogle Scholar
  6. 6.
    Qin X, Gao B. The complement system in liver diseases. Cell Mol Immunol. 2006;3:333–40.PubMedGoogle Scholar
  7. 7.
    Wyke RJ, Yousif-Kadaru AG, Rajkovic IA, Eddleston AL, Williams R. Serum stimulatory activity and polymorphonuclear leucocyte movement in patients with fulminant hepatic failure. Clin Exp Immunol. 1982;50:442–9.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Sun S, Guo Y, Zhao G, Zhou X, Li J, Hu J, Yu H, Chen Y, Song H, Qiao F, Xu G, Yang F, Wu Y, Tomlinson S, Duan Z, Zhou Y. Complement and the alternative pathway play an important role in LPS/D-GalN-induced fulminant hepatic failure. PLoS One. 2011;6:e26838.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Taylor NJ, Manakkat Vijay GK, Abeles RD, Auzinger G, Bernal W, Ma Y, Wendon JA, Shawcross DL. The severity of circulating neutrophil dysfunction in patients with cirrhosis is associated with 90-day and 1-year mortality. Aliment Pharmacol Ther. 2014;40:705–15.PubMedGoogle Scholar
  10. 10.
    Taylor NJ, Nishtala A, Manakkat Vijay GK, Abeles RD, Auzinger G, Bernal W, Ma Y, Wendon JA, Shawcross DL. Circulating neutrophil dysfunction in acute liver failure. Hepatology. 2013;57:1142–52.PubMedGoogle Scholar
  11. 11.
    Liu H, Zhang H, Wan G, Sang Y, Chang Y, Wang X, Zeng H. Neutrophil-lymphocyte ratio: a novel predictor for short-term prognosis in acute-on-chronic hepatitis B liver failure. J Viral Hepat. 2014;21:499–507.PubMedGoogle Scholar
  12. 12.
    Metelitsa LS, Naidenko OV, Kant A, Wu HW, Loza MJ, Perussia B, Kronenberg M, Seeger RC. Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J Immunol. 2001;167:3114–22.PubMedGoogle Scholar
  13. 13.
    Notas G, Kisseleva T, Brenner D. NK and NKT cells in liver injury and fibrosis. Clin Immunol. 2009;130:16–26.PubMedGoogle Scholar
  14. 14.
    Tripathy AS, Das R, Chadha MS, Arankalle VA. Epidemic of hepatitis B with high mortality in India: association of fulminant disease with lack of CCL4 and natural killer T cells. J Viral Hepat. 2011;18:e415–22.PubMedGoogle Scholar
  15. 15.
    Dong X, Gong Y, Zeng H, Hao Y, Wang X, Hou J, Wang J, Li J, Zhu Y, Liu H, Han J, Zhou H, Shen L, Gao T, Zhou T, Yang S, Li S, Chen Y, Meng Q, Li H. Imbalance between circulating CD4+ regulatory T and conventional T lymphocytes in patients with HBV-related acute-on-chronic liver failure. Liver Int. 2013;33:1517–26.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Zou Z, Xu D, Li B, Xin S, Zhang Z, Huang L, Fu J, Yang Y, Jin L, Zhao JM, Shi M, Zhou G, Sun Y, Wang FS. Compartmentalization and its implication for peripheral immunologically-competent cells to the liver in patients with HBV-related acute-on-chronic liver failure. Hepatol Res. 2009;39:1198–207.PubMedGoogle Scholar
  17. 17.
    Thimme R, Wieland S, Steiger C, Ghrayeb J, Reimann KA, Purcell RH, Chisari FV. CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J Virol. 2003;77:68–76.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Ye Y, Liu J, Lai Q, Zhao Q, Peng L, Xie C, Zhang G, Zhang S, Zhang Y, Zhu J, Huang Y, Hu Z, Xie D, Lin B, Gao Z. Decreases in activated CD8+ T cells in patients with severe hepatitis B are related to outcomes. Dig Dis Sci. 2015;60:136–45.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhang JY, Zhang Z, Lin F, Zou ZS, Xu RN, Jin L, Fu JL, Shi F, Shi M, Wang HF, Wang FS. Interleukin-17-producing CD4(+) T cells increase with severity of liver damage in patients with chronic hepatitis B. Hepatology. 2010;51:81–91.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Fernandez J, Acevedo J, Castro M, Garcia O, de Lope CR, Roca D, Pavesi M, Sola E, Moreira L, Silva A, Seva-Pereira T, Corradi F, Mensa J, Gines P, Arroyo V. Prevalence and risk factors of infections by multiresistant bacteria in cirrhosis: a prospective study. Hepatology. 2012;55:1551–61.PubMedGoogle Scholar
  21. 21.
    Pinzone MR, Celesia BM, Di Rosa M, Cacopardo B, Nunnari G. Microbial translocation in chronic liver diseases. Int J Microbiol. 2012;2012:694629.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Rai R, Saraswat VA, Dhiman RK. Gut microbiota: its role in hepatic encephalopathy. J Clin Exp Hepatol. 2015;5:S29–36.PubMedGoogle Scholar
  23. 23.
    Bauer TM, Schwacha H, Steinbruckner B, Brinkmann FE, Ditzen AK, Aponte JJ, Pelz K, Berger D, Kist M, Blum HE. Small intestinal bacterial overgrowth in human cirrhosis is associated with systemic endotoxemia. Am J Gastroenterol. 2002;97:2364–70.PubMedGoogle Scholar
  24. 24.
    Wang XD, Soltesz V, Andersson R, Bengmark S. Bacterial translocation in acute liver failure induced by 90 per cent hepatectomy in the rat. Br J Surg. 1993;80:66–71.PubMedGoogle Scholar
  25. 25.
    Verbeke L, Nevens F, Laleman W. Bench-to-beside review: acute-on-chronic liver failure - linking the gut, liver and systemic circulation. Crit Care. 2011;15:233.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Fukui H. Gut-liver axis in liver cirrhosis: How to manage leaky gut and endotoxemia. World J Hepatol. 2015;7:425–42.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Su HB, Wang HF, Lin F, Xu HM, Zhao H, Li L, Yan T, Mou JS, Li C. Retrospective study of liver failure complicated with bacterium and fungous infection. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2007;21:229–31.PubMedGoogle Scholar
  28. 28.
    Zhang XH, Zhang GH, Man CJ, He FM. Clinical study on the severe hepatitis with nosocomial fungal infections and risk factors. Zhonghua Gan Zang Bing Za Zhi. 2004;12:389–91.PubMedGoogle Scholar
  29. 29.
    Koulaouzidis A. Diagnosis of spontaneous bacterial peritonitis: an update on leucocyte esterase reagent strips. World J Gastroenterol. 2011;17:1091–4.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Koulaouzidis A, Bhat S, Saeed AA. Spontaneous bacterial peritonitis. World J Gastroenterol. 2009;15:1042–9.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Madrid AM, Cumsille F, Defilippi C. Altered small bowel motility in patients with liver cirrhosis depends on severity of liver disease. Dig Dis Sci. 1997;42:738–42.PubMedGoogle Scholar
  32. 32.
    Chiva M, Guarner C, Peralta C, Llovet T, Gomez G, Soriano G, Balanzo J. Intestinal mucosal oxidative damage and bacterial translocation in cirrhotic rats. Eur J Gastroenterol Hepatol. 2003;15:145–50.PubMedGoogle Scholar
  33. 33.
    Ramachandran A, Prabhu R, Thomas S, Reddy JB, Pulimood A, Balasubramanian KA. Intestinal mucosal alterations in experimental cirrhosis in the rat: role of oxygen free radicals. Hepatology. 2002;35:622–9.PubMedGoogle Scholar
  34. 34.
    European Association for the Study of the Liver. EASL clinical practice guidelines on the management of ascites, spontaneous bacterial peritonitis, and hepatorenal syndrome in cirrhosis. J Hepatol. 2010;53:397–417.Google Scholar
  35. 35.
    Runyon BA. Introduction to the revised American Association for the Study of Liver Diseases Practice Guideline management of adult patients with ascites due to cirrhosis 2012. Hepatology. 2013;57:1651–3.PubMedGoogle Scholar
  36. 36.
    Rimola A, Garcia-Tsao G, Navasa M, Piddock LJ, Planas R, Bernard B, Inadomi JM. Diagnosis, treatment and prophylaxis of spontaneous bacterial peritonitis: a consensus document. International Ascites Club. J Hepatol. 2000;32:142–53.PubMedGoogle Scholar
  37. 37.
    Eccles S, Pincus C, Higgins B, Woodhead M. Diagnosis and management of community and hospital acquired pneumonia in adults: summary of NICE guidance. BMJ. 2014;349:g6722.PubMedGoogle Scholar
  38. 38.
    Mandell LA. Community-acquired pneumonia: An overview. Postgrad Med. 2015;127:607–15.PubMedGoogle Scholar
  39. 39.
    Caly WR, Strauss E. A prospective study of bacterial infections in patients with cirrhosis. J Hepatol. 1993;18:353–8.PubMedGoogle Scholar
  40. 40.
    Rolando N, Kramer DJ. Scenario number one: sepsis and ARDS before liver transplantation. Liver Transpl Surg. 1997;3:60–75.PubMedGoogle Scholar
  41. 41.
    Rolando N, Harvey F, Brahm J, Philpott-Howard J, Alexander G, Casewell M, Fagan E, Williams R. Fungal infection: a common, unrecognised complication of acute liver failure. J Hepatol. 1991;12:1–9.PubMedGoogle Scholar
  42. 42.
    Hassan EA, Abd El-Rehim AS, Hassany SM, Ahmed AO, Elsherbiny NM, Mohammed MH. Fungal infection in patients with end-stage liver disease: low frequency or low index of suspicion. Int J Infect Dis. 2014;23:69–74.PubMedGoogle Scholar
  43. 43.
    Kups J, Wozniakowska-Gesicka T, al-Batool K. Fungal infection in the course of acute liver failure. Pol Merkur Lekarski. 2002;13:165–7.PubMedGoogle Scholar
  44. 44.
    Chen J, Yang Q, Huang J, Li L. Risk factors for invasive pulmonary aspergillosis and hospital mortality in acute-on-chronic liver failure patients: a retrospective-cohort study. Int J Med Sci. 2013;10:1625–31.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Shroff S, Shroff GS, Yust-Katz S, Olar A, Tummala S, Tremont-Lukats IW. The CT halo sign in invasive aspergillosis. Clin Case Rep. 2014;2:113–4.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Deeren DH. The Importance of Previous CT Scans in the Diagnosis of Invasive Pulmonary Aspergillosis. Ther Adv Hematol. 2011;2:121–2.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Caillot D, Latrabe V, Thiebaut A, Herbrecht R, De Botton S, Pigneux A, Monchecourt F, Mahi L, Alfandari S, Couaillier JF. Computer tomography in pulmonary invasive aspergillosis in hematological patients with neutropenia: an useful tool for diagnosis and assessment of outcome in clinical trials. Eur J Radiol. 2010;74:e172–5.PubMedGoogle Scholar
  48. 48.
    Docke WD, Prosch S, Fietze E, Kimel V, Zuckermann H, Klug C, Syrbe U, Kruger DH, von Baehr R, Volk HD. Cytomegalovirus reactivation and tumour necrosis factor. Lancet. 1994;343:268–9.Google Scholar
  49. 49.
    Varani S, Lazzarotto T, Margotti M, Masi L, Gramantieri L, Bolondi L, Landini MP. Laboratory signs of acute or recent cytomegalovirus infection are common in cirrhosis of the liver. J Med Virol. 2000;62:25–8.PubMedGoogle Scholar
  50. 50.
    Knollmann FD, Maurer J, Bechstein WO, Vogl TJ, Neuhaus P, Felix R. Pulmonary disease in liver transplant recipients. Spectrum of CT features. Acta Radiol. 2000;41:230–6.PubMedGoogle Scholar
  51. 51.
    Dhiman RK, Saraswat VA, Rajekar H, Reddy C, Chawla YK. A guide to the management of tuberculosis in patients with chronic liver disease. J Clin Exp Hepatol. 2012;2:260–70.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Menzies D, Pai M, Comstock G. Meta-analysis: new tests for the diagnosis of latent tuberculosis infection: areas of uncertainty and recommendations for research. Ann Intern Med. 2007;146:340–54.PubMedGoogle Scholar
  53. 53.
    Pai M, Zwerling A, Menzies D. Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: an update. Ann Intern Med. 2008;149:177–84.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Ferrara G, Losi M, Meacci M, Meccugni B, Piro R, Roversi P, Bergamini BM, D’Amico R, Marchegiano P, Rumpianesi F, Fabbri LM, Richeldi L. Routine hospital use of a new commercial whole blood interferon-gamma assay for the diagnosis of tuberculosis infection. Am J Respir Crit Care Med. 2005;172:631–5.PubMedGoogle Scholar
  55. 55.
    Gangadharam PR. Microbiology of nontuberculosis mycobacteria. Semin Respir Infect. 1996;11:231–43.PubMedGoogle Scholar
  56. 56.
    Atilla A, Aydin S, Demirdoven AN, Kilic SS. Severe toxoplasmic hepatitis in an immunocompetent patient. Jpn J Infect Dis. 2015;Google Scholar
  57. 57.
    Bartelt LA, Sartor RB. Advances in understanding Giardia: determinants and mechanisms of chronic sequelae. F1000Prime Rep. 2015;7:62.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Buonfrate D, Formenti F, Perandin F, Bisoffi Z. Novel approaches to the diagnosis of Strongyloides stercoralis infection. Clin Microbiol Infect. 2015;21:543–52.PubMedGoogle Scholar
  59. 59.
    Nakajima T. Roles of sulfur metabolism and rhodanese in detoxification and anti-oxidative stress functions in the liver: responses to radiation exposure. Med Sci Monit. 2015;21:1721–5.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Muciñobermejo J, Carrilloesper R, Uribe M, et al. Coagulation abnormalities in the cirrhotic patient. Ann Hepatol. 2013;12:713–24.Google Scholar
  61. 61.
    Mihaila R, Dragomir I. Advances of knowledge on coagulation disorders in liver cirrhosis and their clinical consequences. Biomed Res. 2015;26:625–32.Google Scholar
  62. 62.
    Mirsaeva GK, Mironchuk NN. Features of coagulation hemostasis and anticoagulation system in patients with chronic heart failure due to ischemic heart disease. Kazan Med J. 2015;96(5):716–22.Google Scholar
  63. 63.
    Valla DC, Rautou PE. The coagulation system in patients with end-stage liver disease. Liver Int. 2015;35(Suppl 1):139–44.PubMedGoogle Scholar
  64. 64.
    Jeon YJ, Kim YR, Bo EL, et al. Association of five common polymorphisms in the plasminogen activator inhibitor-1 gene with primary ovarian insufficiency. Fertil Steril. 2014;101:825–32.PubMedGoogle Scholar
  65. 65.
    Okafor ON, Gorog DA. Endogenous fibrinolysis: an important mediator of thrombus formation and cardiovascular risk. J Am Coll Cardiol. 2015;65:1683–99.PubMedGoogle Scholar
  66. 66.
    Pallister CJ, Watson MS. Haematology. Banbury: Scion; 2010. p. 336–47. isbn:1-904842-39-9.Google Scholar
  67. 67.
    Heinz S, Braspenning J. Measurement of blood coagulation factor synthesis in cultures of human hepatocytes. Methods Mol Biol. 2015;1250:309–16.PubMedGoogle Scholar
  68. 68.
    Kopec AK, Luyendyk JP. Coagulation in liver toxicity and disease: Role of hepatocyte tissue factor. Thromb Res. 2014;133:S57–9.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Valla DC, Rautou PE. The coagulation system in patients with end-stage liver disease. Liver Int. 2015;35(Suppl 1):139–44.PubMedGoogle Scholar
  70. 70.
    Gutenberg P. Coagulation factor V deficiency. Phlebology. 2016;34:160–6.Google Scholar
  71. 71.
    Pluta A, Gutkowski K, Hartleb M. Treatment of coagulopathies in severe liver disease. Postepy Nauk Medycznych. 2010:63–8.Google Scholar
  72. 72.
    Jin YH, Wang MS, Zheng FX, et al. Molecular genetics and clinical features of nine patients with inherited coagulation factor VII deficiency. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2012;29:404–7.PubMedGoogle Scholar
  73. 73.
    Math SK, Sanders MA, Hollensead SC. Unexpected laboratory diagnosis: Acquired dysfibrinogenemia in a bleeding patient with liver disease. MLO Med Lab Obs. 2010;42Google Scholar
  74. 74.
    Chen W, Wang D, Ni N, et al. A fast and simple approach to the quantitative evaluation of fibrinogen coagulation. Biotechnol Lett. 2014;36:337–40.PubMedGoogle Scholar
  75. 75.
    Schroeder V, Handrková H, Dodt J, et al. Free factor XIII activation peptide affects factor XIII function. Br J Haematol. 2014;168:757–9.PubMedGoogle Scholar
  76. 76.
    Komáromi I, Bagoly Z, Muszbek L. Factor XIII: novel structural and functional aspects. J Thromb Haemost. 2011;9:9–20.PubMedGoogle Scholar
  77. 77.
    Samis JA, Stewart KA, Nesheim ME, et al. Factor V cleavage and inactivation are temporally associated with elevated elastase during experimental sepsis. J Thromb Haemost. 2007;5:2559–61.PubMedGoogle Scholar
  78. 78.
    Wheeler AP, Gailani D. The intrinsic pathway of coagulation as a target for antithrombotic therapy. Hematol Oncol Clin North Am. 2016;30:1099–114.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Kozarcanin H, Lood C, Munthe-Fog L, et al. The lectin complement pathway serine proteases (MASPs) represent a possible crossroad between the coagulation and complement systems in thromboinflammation. J Thromb Haemost. 2016;14:802–7.Google Scholar
  80. 80.
    Annich GM. Extracorporeal life support: the precarious balance of hemostasis. J Thromb Haemost. 2015, 13 Suppl 1:S336–42.PubMedGoogle Scholar
  81. 81.
    Chalupa P, Holub M. Favorable Outcome of Severe Acute Hepatitis B in a Patient Treated with Antithrombin III and Antiviral Therapy. Clin Infect Dis. 2009;49:481.PubMedGoogle Scholar
  82. 82.
    Huang N, Rodriguez R L, Hagie F E, et al. Monocot seed product comprising a human serum albumin protein: US, US 8158857 B2[P]. 2012.Google Scholar
  83. 83.
    Kutcher ME, Ferguson AR, Cohen MJ. A principal component analysis of coagulation after trauma. J Trauma Injury Infect Crit Care. 2013;74:1223–9.Google Scholar
  84. 84.
    Okamoto K, Tamura T, Yamaguchi K. Clinical trials of anticoagulants and anticoagulant factor concentrates for the management of DIC in Japan. Rinsho Byori. 2011;Suppl 147:95–103.Google Scholar
  85. 85.
    Mann HJ, Short MA, Schlichting DE. Protein C in critical illness. Am J Health Syst Pharm. 2009;66:1089–96.PubMedGoogle Scholar
  86. 86.
    Kruithof EK, Dunoyer-Geindre S. Human tissue-type plasminogen activator. Thromb Haemost. 2014;112:243–54.PubMedGoogle Scholar
  87. 87.
    Jankun J, Aleem AM, Selman SH, et al. Highly stable plasminogen activator inhibitor type one (VLHL PAI-1) protects fibrin clots from tissue plasminogen activator-mediated fibrinolysis. Int J Mol Med. 2007;20:683–7.PubMedGoogle Scholar
  88. 88.
    Martí-Carvajal AJ, Cardona AF, Simancas D. Treatment for disseminated intravascular coagulation in patients with acute and chronic leukemia. Cochrane Database Syst Rev. 2015;66:1–2.Google Scholar
  89. 89.
    Frith D, Brohi K. The pathophysiology of trauma-induced coagulopathy. Curr Opin Crit Care. 2012;18(6):631–6.PubMedGoogle Scholar
  90. 90.
    Agren A, Wiman B, Schulman S. Laboratory evidence of hyperfibrinolysis in association with low PAI-1 activity. Blood Coagul Fibrinolysis. 2007;18:657–60.PubMedGoogle Scholar
  91. 91.
    Carvalho M, Rodrigues A, Gomes M, et al. Interventional algorithms for the control of coagulopathic bleeding in surgical, trauma, and postpartum settings: recommendations from the Share Network Group. Clin Appl Thromb Hemost. 2016;22:1593–600.Google Scholar
  92. 92.
    Surawong A, Rojnuckarin P, Juntiang J, et al. Hyperfibrinolysis and the risk of hemorrhage in stable cirrhotic patients. Asian Biomed. 2010;4:199–206.Google Scholar
  93. 93.
    Fohlen-Walter A, Maistre ED, Mulot A, et al. Does negative heparin-platelet factor 4 enzyme-linked immunosorbent assay effectively exclude heparin-induced thrombocytopenia? J Thromb Haemost. 2003;1:1844–5.PubMedGoogle Scholar
  94. 94.
    Lehmann JP. Endogenous plasma activated protein C levels and the effect of enoxaparin and drotrecogin alfa (activated) on markers of coagulation activation and fibrinolysis in pulmonary embolism. Crit Care. 2011;15:1–10.Google Scholar
  95. 95.
    Yousif M, Hassanein O, Salim I, Said N. Role of endogenous heparinoids and bacerial infection in bleeding from esophageal varices complicating liver cirrhosis. J Hepatol. 50:S284.Google Scholar
  96. 96.
    Blich M, Golan A, Arvatz G, et al. Macrophages activation by heparanase is mediated by TLR-2 and TLR-4 and associates with plaque progression. Arterioscler Thromb Vasc Biol. 2013;33:e56–65.PubMedGoogle Scholar
  97. 97.
    Lentz BR. Exposure of platelet membrane phosphatidylserine regulates blood coagulation. Prog Lipid Res. 2003;42:423–38.PubMedGoogle Scholar
  98. 98.
    Kuharsky AL, Fogelson AL. Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition. Biophys J. 2001;80:1050–74.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Crow AR, Leytin V, Starkey AF, et al. CD154 (CD40 ligand)-deficient mice exhibit prolonged bleeding time and decreased shear-induced platelet aggregates. J Thromb Haemost. 2003;1:850–2.PubMedGoogle Scholar
  100. 100.
    Jiang XW, Fei G, Yan M, et al. Percutaneous microwave ablation in the spleen for treatment of hypersplenism in cirrhosis patients. Digest Dis Sci. 2015;61:1–6.Google Scholar
  101. 101.
    Tomikawa M, Akahoshi T, Sugimachi K, et al. Laparoscopic splenectomy may be a superior supportive intervention for cirrhotic patients with hypersplenism. J Gastroenterol Hepatol. 2010;25:397–402.PubMedGoogle Scholar
  102. 102.
    Kuter DJ, Gernsheimer TB. Thrombopoietin and platelet production in chronic immune thrombocytopenia. Hematol Oncol Clin North Am. 2009;23:1193–211.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Bachman DE, Forman MA, Hostutler RA, et al. Prospective diagnostic accuracy evaluation and clinical utilization of a modified assay for platelet-associated immunoglobulin in thrombocytopenic and nonthrombocytopenic dogs. Vet Clin Pathol. 2015;44:355–68.PubMedGoogle Scholar
  104. 104.
    Melissa V. Chan, Rebecca B. M. Knowles, Lundberg M H, et al. P2Y 12, receptor blockade synergises strongly with nitric oxide and prostacyclin to inhibit platelet activation. Br J Clin Pharmacol, 2015, 81:621–633.Google Scholar
  105. 105.
    De Haas CJC, Weeterings C, Vughs MM, et al. Staphylococcal superantigen-like 5 activates platelets and supports platelet adhesion under flow conditions, which involves glycoprotein Ibα and α IIb β 3. J Thromb Haemost. 2009;7:1867–74.PubMedGoogle Scholar
  106. 106.
    Soares CV, Lima A, et al. Liver disease and gastrointestinal bleeding in hereditary haemorrhagic telangiectasia - case report. Jornal Português De Gastrenterologia. 2010:213–6.Google Scholar
  107. 107.
    Philips C, Mukhopadhyay P. Hemostasis, disorders of coagulation and transfusion in cirrhosis. J Franklin Inst. 2015;64:123–4.Google Scholar
  108. 108.
    Arroyo V, Fernandez J, Ginès P. Pathogenesis and treatment of hepatorenal syndrome. Semin Liver Dis. 2008;28:81–95.PubMedGoogle Scholar
  109. 109.
    Tandon P, Garcia-Tsao G. Bacterial infections, sepsis, and multiorgan failure in cirrhosis. Semin Liver Dis. 2008;28:26–42.PubMedGoogle Scholar
  110. 110.
    Cho J, Sun MC, Yu SJ, et al. Bleeding complications in critically ill patients with liver cirrhosis. Korean J Intern Med. 2013;31:288–95.Google Scholar
  111. 111.
    Sillermatula JM, Schwameis M, Blann A, et al. Thrombin as a multi-functional enzyme. Focus on in vitro and in vivo effects. Thromb Haemost. 2011;106:1020–33.Google Scholar
  112. 112.
    Tripodi A, Anstee QM, Sogaard KK, et al. Hypercoagulability in cirrhosis: causes and consequences 1. J Thromb Haemost. 2011;9:1713–23.PubMedGoogle Scholar
  113. 113.
    Presseizen K, Friedman Z, Shapiro H, et al. Phosphatidylserine expression on the platelet membrane of patients with myeloproliferative disorders and its effect on platelet-dependent thrombin formation. Clin Appl Thromb Hemost. 2002;8:33–9.PubMedGoogle Scholar
  114. 114.
    Ali M, Ananthakrishnan AN, Mcginley EL, et al. Deep vein thrombosis and pulmonary embolism in hospitalized patients with cirrhosis: a nationwide analysis. Digest Dis Sci. 2011;56:2152–9.PubMedGoogle Scholar
  115. 115.
    Kamran BL, Katayon H, Dorna M, et al. Risk factors for portal vein thrombosis in patients with cirrhosis awaiting liver transplantation in Shiraz, Iran. Hepat Mon. 2015;15:e26407.Google Scholar
  116. 116.
    Jacobs BS, Levine SR. Antiphospholipid antibody syndrome. Curr Treat Options Neurol. 2012;2:449–57.Google Scholar
  117. 117.
    Soule H R, Brunck T K. Blood coagulation protein antagonists and uses therefor: EP, US 6221659 B1[P]. 2001.Google Scholar
  118. 118.
    Weingarten MA, Sande AA. Acute liver failure in dogs and cats. J Vet Emerg Crit Care. 2015;25:455–73.Google Scholar
  119. 119.
    Asakura H. Classifying types of disseminated intravascular coagulation: clinical and animal models. J Intensive Care. 2014;2:1–7.Google Scholar
  120. 120.
    Seth D, Haber PS, Syn WK, et al. Pathogenesis of alcohol-induced liver disease: classical concepts and recent advances. J Gastroenterol Hepatol. 2011;26:1089–105.PubMedGoogle Scholar
  121. 121.
    Collen D. Thrombin-antithrombin III and plasmin-antiplasmin complexes as indicators of in vivo activation of the coagulation and/or fibrinolytic systems. Pier Working Paper Archive. 2006;32:398–402.Google Scholar
  122. 122.
    Giannoni P, Pietra G, Travaini G, et al. Chronic lymphocytic leukemia nurse-like cells express hepatocyte growth factor receptor (c-MET) and indoleamine 2,3-dioxygenase and display features of immunosuppressive type 2 skewed macrophages. Haematologica. 2014;99:1078–87.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Pluta A, Gutkowski K, Hartleb M. Coagulopathy in liver diseases. Adv Med Sci. 2010;55:16–21.PubMedGoogle Scholar
  124. 124.
    Jablonka W, Kotsyfakis M, Mizurini DM, et al. Identification and mechanistic analysis of a novel tick-derived inhibitor of thrombin. PLoS One. 2014;10:e0133991.Google Scholar
  125. 125.
    Gajos G, Zalewski J, Undas A. Low fasting glucose is associated with enhanced thrombin generation and unfavorable fibrin clot properties in diabetics with high cardiovascular risk. J Am Coll Cardiol. 2015;65:476–80.Google Scholar
  126. 126.
    Weijers EM, Wijhe MHV, Joosten L, et al. Molecular weight fibrinogen variants alter gene expression and functional characteristics of human endothelial cells. J Thromb Haemost. 2010;8:2800–9.PubMedGoogle Scholar
  127. 127.
    Chen CS, Cumbler EU, Triebling AT. Coagulopathy due to celiac disease presenting as intramuscular hemorrhage. J Gen Intern Med. 2007;22:1608–12.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Birchall J, Doree C, Gill R, et al. Recombinant factor VIIa for the prevention and treatment of bleeding in patients without haemophilia. Cochrane Database Syst Rev. 2011;20:93–103.Google Scholar
  129. 129.
    Wang L, Bastarache JA, Ware LB. The coagulation cascade in sepsis. Curr Pharm Des. 2008;14:1860–9.PubMedGoogle Scholar
  130. 130.
    Abdel-Razik A, Mousa N, Elhelaly R, et al. De-novo portal vein thrombosis in liver cirrhosis: risk factors and correlation with the model for end-stage liver disease scoring system. Eur J Gastroenterol Hepatol. 2015;27:585–92.PubMedGoogle Scholar
  131. 131.
    Baumann Kreuziger LM, Datta YH, Johnson AD, et al. Monitoring anticoagulation in patients with an unreliable PT/INR: factor II versus chromogenic factor X testing. Am J Hematol. 2014;87Google Scholar
  132. 132.
    Tripodi A, Chantarangkul V, Primignani M, et al. The international normalized ratio calibrated for cirrhosis (INR liver) normalizes prothrombin time results for model for end-stage liver disease calculation †. Hepatology. 2007;46(2):520–7.PubMedGoogle Scholar
  133. 133.
    Shiozawa Y, Fujita H, Fujimura J, et al. A fetal case of transient abnormal myelopoiesis with severe liver failure in Down syndrome: prognostic value of serum markers. Pediatr Hematol Oncol. 2004;21:273–8.PubMedGoogle Scholar
  134. 134.
    Liu XY, Hu JH, Wang HF. Analysis of prognostic factors for patients with acute-on-chronic liver failure. Chin J Hepatol. 2009;17:607–10.Google Scholar
  135. 135.
    Lippi G, Favaloro EJ. Activated partial thromboplastin time: new tricks for an old dogma. Semin Thromb Hemost. 2008;34:604–11.PubMedGoogle Scholar
  136. 136.
    Wu SJ, Yan HD, Zheng ZX, et al. Establishment and validation of ALPH-Q score to predict mortality risk in patients with acute-on-chronic hepatitis B liver failure: a prospective cohort study. Medicine. 2015;94:e403.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Tobias JD, Berkenbosch JW. Synthetic factor VIIa concentrate to treat coagulopathy and gastrointestinal bleeding in an infant with end-stage liver disease. Clin Pediatr. 2002;41:613–6.Google Scholar
  138. 138.
    Chen J, Duan ZP, Bai L, et al. Changing characteristic of blood coagulation factors and their correlation with blood coagulation status in different hepatic diseases. Chin J Hepatol. 2012;20:206–10.Google Scholar
  139. 139.
    Berkessy S. The plasma-protamine-paracoagulation-(3-P-) test. Zeitschrift Für Die Gesamte Innere Medizin Und Ihre Grenzgebiete. 1974;29:491–3.PubMedGoogle Scholar
  140. 140.
    Timan IS, Aulia D, Enny. The use of ethanol gelation test to screen the activation of coagulation and disseminated intravascular coagulation. J Lab Med Qual Assur, 2003, 25:231–235.Google Scholar
  141. 141.
    Venkata NRE, Divakar G. An overview on microbial fibrinolytic proteases. Int J Pharm Sci Res. 2014;5:643–56.Google Scholar
  142. 142.
    Nair GB, Lajin M, Muslimani A. A cirrhotic patient with spontaneous intramuscular hematoma due to primary hyperfibrinolysis. Clin Adv Hematol Oncol. 2011;9:249–52.PubMedGoogle Scholar
  143. 143.
    Sartori MT, Spiezia L, Cesaro S, et al. Role of fibrinolytic and clotting parameters in the diagnosis of liver veno-occlusive disease after hematopoietic stem cell transplantation in a pediatric population. Thromb Haemost. 2005;93:682–9.PubMedGoogle Scholar
  144. 144.
    Koyama K, Madoiwa S, Nunomiya S, et al. Combination of thrombin-antithrombin complex, plasminogen activator inhibitor-1, and protein C activity for early identification of severe coagulopathy in initial phase of sepsis: a prospective observational study. Crit Care. 2014;18:1–11.Google Scholar
  145. 145.
    Seto WK, Lai CL, Yuen MF. Acute-on-chronic liver failure in chronic hepatitis B. J Gastroenterol Hepatol. 2012;27:662–9.Google Scholar
  146. 146.
    Zanetto A, Senzolo M, Ferrarese A, et al. Assessment of bleeding risk in patients with cirrhosis. Curr Hepatol Rep. 2015;14:9–18.Google Scholar
  147. 147.
    Bailey MA, Griffin KJ, Sohrabi S, et al. Plasma thrombin-antithrombin complex, prothrombin fragments 1 and 2, and D-dimer levels are elevated after endovascular but not open repair of infrarenal abdominal aortic aneurysm. J Vasc Surg. 2013;57:1512–8.PubMedGoogle Scholar
  148. 148.
    Lisman T, Bakhtiari K, Adelmeijer J, et al. Intact thrombin generation and decreased fibrinolytic capacity in patients with acute liver injury or acute liver failure. J Thromb Haemost. 2012;10:1312–9.PubMedGoogle Scholar
  149. 149.
    Aso Y, Matsumoto S, Fujiwara Y, et al. Impaired fibrinolytic compensation for hypercoagulability in obese patients with type 2 diabetes: association with increased plasminogen activator inhibitor-1. Metabolism. 2002;51:471–6.PubMedGoogle Scholar
  150. 150.
    Levi M, De JE, Meijers J. The diagnosis of disseminated intravascular coagulation. Blood Rev. 2003;16:217–23.Google Scholar
  151. 151.
    Kawasugi K, Wada H, Hatada T, et al. Prospective evaluation of hemostatic abnormalities in overt DIC due to various underlying diseases. Thromb Res. 2011;128:186–90.PubMedGoogle Scholar
  152. 152.
    Tang XH, Qiang LI, Lin WH, et al. Establishment and evaluation of a modified plasma protamine paracoagulation test. J Southern Med Univ. 2011;31:1626–8.Google Scholar
  153. 153.
    Olson JD. D-dimer: an overview of hemostasis and fibrinolysis, assays, and clinical applications. Adv Clin Chem. 2015;69:1–46.PubMedGoogle Scholar
  154. 154.
    Lippi G, Favaloro EJ, Cervellin G. Massive posttraumatic bleeding: epidemiology, causes, clinical features, and therapeutic management. Semin Thromb Hemost. 2013;39:83–93.PubMedGoogle Scholar
  155. 155.
    Bhalla A, Suri V, Singh V. Malarial hepatopathy. J Postgrad Med. 2006;52:315–20.PubMedGoogle Scholar
  156. 156.
    Wada H, Matsumoto T, Yamashita Y. Diagnosis and treatment of disseminated intravascular coagulation (DIC) according to four DIC guidelines. J Intensive Care. 2014;2:15.PubMedPubMedCentralGoogle Scholar
  157. 157.
    Heuft MM, Houba SM, Ge VDB, et al. Protective effect of hepatitis B virus-active antiretroviral therapy against primary hepatitis B virus infection. AIDS. 2014;28:999–1005.PubMedGoogle Scholar
  158. 158.
    Kozeklangenecker SA. Fluids and coagulation. Curr Opin Crit Care. 2015;21:517–24.Google Scholar
  159. 159.
    Bhatia V, Lodha R. Upper gastrointestinal bleeding. Indian J Pediatr. 2011;78:227–33.PubMedGoogle Scholar
  160. 160.
    Seo YS, Kim YH, Ahn SH, et al. Clinical features and treatment outcomes of upper gastrointestinal bleeding in patients with cirrhosis. J Korean Med Sci. 2008;23:635–43.PubMedPubMedCentralGoogle Scholar
  161. 161.
    Franchis RD. Somatostatin, somatostatin analogues and other vasoactive drugs in the treatment of bleeding oesophageal varices. Dig Liver Dis. 2004;36(Suppl 1):S93–S100.PubMedGoogle Scholar
  162. 162.
    Barkun AN, Sarvee M, Myriam M. Topical hemostatic agents: a systematic review with particular emphasis on endoscopic application in GI bleeding. Gastrointest Endosc. 2013;77:692–700.PubMedGoogle Scholar
  163. 163.
    Olsen KM. Use of acid-suppression therapy for treatment of non-variceal upper gastrointestinal bleeding. Am J Health Syst Pharm. 2005;62:18–23.Google Scholar
  164. 164.
    Bosch J, Abraldes JG, Berzigotti A, et al. Portal hypertension and gastrointestinal bleeding. Semin Liver Dis. 2008;28:3–25.PubMedGoogle Scholar
  165. 165.
    Tan XP. Observed the effect of Improved three-balloon catheter tube method in cirrhotic patients with gastrointestinal bleeding. Today Nurse. 2014;Google Scholar
  166. 166.
    Barkun A, Sabbah S, Enns R, et al. The Canadian Registry on Nonvariceal Upper Gastrointestinal Bleeding and Endoscopy (RUGBE): Endoscopic hemostasis and proton pump inhibition are associated with improved outcomes in a real-life setting. Am J Gastroenterol. 2004;99:1238–46.PubMedGoogle Scholar
  167. 167.
    Jovanovic I, Vormbrock K, Wilcox CM, et al. Therapeutic and interventional endoscopy for gastrointestinal bleeding. Eur J Trauma Emerg Surg. 2011;37:339–51.PubMedGoogle Scholar
  168. 168.
    Dempfle CE, Borggrefe M. Disseminated intravascular coagulation. Intensivmedizin Und Notfallmedizin. 2006;43:103–10.Google Scholar
  169. 169.
    Saito H, Maruyama I, Shimazaki S, et al. Efficacy and safety of recombinant human soluble thrombomodulin (ART-123) in disseminated intravascular coagulation: results of a phase III, randomized, double-blind clinical trial. J Thromb Haemost. 2007;5:31–41.PubMedGoogle Scholar
  170. 170.
    Yamanouchi M, Ubara Y, Mise K, et al. Hemodialysis without Anticoagulation for a Patient with Chronic Disseminated Intravascular Coagulation. Case Rep Nephrol Urol. 2014;4:25–30.PubMedPubMedCentralGoogle Scholar
  171. 171.
    Alessandria C, Ozdogan O, Guevara M, Restuccia T, Jimenez W, Arroyo V, et al. MELD score and clinical type predict prognosis in hepatorenal syndrome: relevance to liver transplantation. Hepatology. 2005;41:1282–9.PubMedGoogle Scholar
  172. 172.
    Ginės P, Guevara M, Arroyo V, et al. Hepatorenal syndrome. Lancet. 2003;362:1819–27.PubMedGoogle Scholar
  173. 173.
    O’Grady JG. Clinical disorders of renal function in acute liver failure. In: Gines P, Arroyo V, Rodes J, Schrier RW, editors. Ascites and renal dysfunction in liver disease. 2nd ed. Oxford: Blackwell Publishing; 2005. p. 383–93.Google Scholar
  174. 174.
    Flint A. Clinical report on hydroperitoneum based on analysis of 46 cases. Am J MedSci. 1963;45:306e39.Google Scholar
  175. 175.
    Bartoli E, Chiandussi L, editors. Hepato-Renal Syndrome. Padua: Piccin Medical Books; 1979.Google Scholar
  176. 176.
    Arroyo V, Gines P, Gerbes AL, et al. Definition and diagnostic criteria of refractory ascites and hepatorenal syndrome in cirrhosis. Int Ascites Club Hepatol. 1996;23:164e76.Google Scholar
  177. 177.
    Salerno F, Gerbes A, Gines P, Wong F, Arroyo V. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Gut. 2007;56:1310–8.PubMedPubMedCentralGoogle Scholar
  178. 178.
    Wong F, Nadim MK, Kellum JA, Salerno F, Bellomo R, Gerbes A, Angeli P, et al. Working Party proposal for a revised classification system of renal dysfunction in patients with cirrhosis. Gut. 2011;60:702–9.PubMedGoogle Scholar
  179. 179.
    Davis CL, Feng S, Sung R, Wong F, Goodrich NP, Melton LB, Reddy KR, et al. Simultaneous liver-kidney transplantation: evaluation to decision making. Am J Transplant. 2007;7:1702–9.PubMedGoogle Scholar
  180. 180.
    Laleman W. Role of vasoactive substances and cellular effectors in the pathophysiology of cirrhotic portal hypertension: the past, the present and the future--Georges Brohe’e Lecture. Acta Gastroenterol Belg. 2009;72:9e16.Google Scholar
  181. 181.
    Colle I, Geerts AM, Van Steenkiste C, et al. Hemodynamic changes in splanchnic blood vessels in portal hypertension. Anat Rec (Hoboken). 2008;291:699e713.Google Scholar
  182. 182.
    Rodrìguez-Vilarrupla A, Fernàndez M, Bosch J, et al. Current concepts on the pathophysiology of portal hypertension. Ann Hepatol. 2007;6:28e36.Google Scholar
  183. 183.
    Blendis L, Wong F. The hyperdynamic circulation in cirrhosis: an overview. Pharmacol Ther. 2001;89:221e31.Google Scholar
  184. 184.
    Wong F, Pantea L, Sniderman K. Midodrine, octreotide, albumin, and TIPS in selected patients with cirrhosis and type 1 hepatorenal syndrome. Hepatology. 2004;40:55e64.Google Scholar
  185. 185.
    Wong F, Sniderman K, Liu P, et al. The effects of transjugular intrahepatic portosystemic shunt on systemic and renal hemodynamics and sodium homeostasis in cirrhotic patients with refractory ascites. Ann Intern Med. 1995;122:816e22.Google Scholar
  186. 186.
    Arroyo V, Terra C, Gines P. Advances in the pathogenesis and treatment of type-1 and type-2 hepatorenal syndrome. J Hepatol. 2007;46:935e46.Google Scholar
  187. 187.
    Bernadich C, Bandi JC, Piera C, et al. Circulatory effects of graded diversion of portal blood flow to the systemic circulation in rats: role of nitric oxide. Hepatology. 1997;26:262e7.Google Scholar
  188. 188.
    Bosch J, Pizcueta MP, Fernandez M, et al. Hepatic, splanchnic and systemic haemodynamic abnormalities in portal hypertension. Baillieres Clin Gastroenterol. 1992;6:425e36.Google Scholar
  189. 189.
    Garcia-Tsao G, Parikh CR, Viola A. Acute kidney injury in cirrhosis. Hepatology. 2008;48:2064–77.PubMedGoogle Scholar
  190. 190.
    Schrier RW, Arroyo V, Bernardi M, Epstein M, Henriksen JH, Rodes J. Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology. 1988;8:1151–7.PubMedGoogle Scholar
  191. 191.
    Iwakiri Y, Groszmann RJ. The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule. Hepatology. 2006;43:S121–31.PubMedGoogle Scholar
  192. 192.
    Ginès A, Escorsell A, Ginès P, et al. Incidence, predictive factors, and prognosis of hepatorenal syndrome in cirrhosis with ascites. Gastroenterology. 1993;105:229–36.PubMedGoogle Scholar
  193. 193.
    Lata J. Hepatorenal syndrome. World J Gastroenterol. 2012;18:4978–84.PubMedPubMedCentralGoogle Scholar
  194. 194.
    Salerno F, Cazzaniga M, Merli M, Spinzi G, Saibeni S, Salmi A, Fagiuoli S, et al. Diagnosis, treatment and survival of patients with hepatorenal syndrome: a survey on daily medical practice. J Hepatol. 2011;55:1241–8.PubMedGoogle Scholar
  195. 195.
    Zakim B, et al. Hepatology [M]. 6th ed: Elsevier Medicine; 2011.Google Scholar
  196. 196.
    Seu P, Wilkinson AH, Shaked A, et al. The hepatorenal syndrome in liver transplant recipients. Ann Surg. 1991;57:806–9.Google Scholar
  197. 197.
    Sanyal AJ, Boyer T, Garcia-Tsao G, Regenstein F, et al. A randomized, prospective, double-blind, placebo-controlled trial of terlipressin for type 1 hepatorenal syndrome. Gastroenterology. 2008;134:1360–8.PubMedPubMedCentralGoogle Scholar
  198. 198.
    Martin-Llahi M, Pepin MN, Guevara M, Diaz F, Torre A, Monescillo A, Soriano G, et al. Terlipressin and albumin vs albumin in patients with cirrhosis and hepatorenal syndrome: a randomized study. Gastroenterology. 2008;134:1352–9.PubMedGoogle Scholar
  199. 199.
    Moreau R, Durand F, Poynard T, et al. Terlipressin in patients with cirrhosis and type 1 hepatorenal syndrome: a retrospective multicenter study. Gastroenterology. 2002;122:923–30.PubMedGoogle Scholar
  200. 200.
    Solanki P, Chawla A, Garg R, et al. Beneficial effects of terlipressin in hepatorenal syndrome: a prospective, randomized placebo-controlled clinical trial. J Gastroenterol Hepatol. 2003;18:152–6.PubMedGoogle Scholar
  201. 201.
    Lavayssiere L, Kallab S, Cardeau-Desangles I, et al. Impact of molecular adsorbent recirculating system on renal recovery in type-1 hepatorenal syndrome patients with chronic liver failure. J Gastroenterol Hepatol. 2013;28:1019–24.PubMedGoogle Scholar
  202. 202.
    Wong F, Raina N, Richardson R. Molecular adsorbent recirculating system is ineffective in the management of type 1 hepatorenal syndrome in patients with cirrhosis and ascites who have failed vasoconstrictor treatment. Gut. 2010;59:381–6.PubMedGoogle Scholar
  203. 203.
    Mitzner SR, Stange J, Klammt S, et al. Improvement of hepatorenal syndrome with extracorporeal albumin dialysis MARS: Results of a prospective, randomized, controlled clinical trial. Liver Transpl. 2000;6:277–86.PubMedGoogle Scholar
  204. 204.
    Heemann U, Treichel U, Loock J, et al. A dialysis in cirrhosis with superimposed acute liver injury: a prospective, controlled study. Hepatology. 2002;36:949–58.PubMedPubMedCentralGoogle Scholar
  205. 205.
    Ochs A, Rössle M, Haag K, Hauenstein KH, et al. The transjugular intrahepatic portosystemic stent-shunt procedure for refractory ascites. N Engl J Med. 1995;332:1192–7.PubMedGoogle Scholar
  206. 206.
    Somberg KA, Lake JR, Tomlanovich SJ, et al. Transjugular intrahepatic portosystemic shunts for refractory ascites: assessment of clinical and hormonal response and renal function. Hepatology. 1995;21:709–16.PubMedGoogle Scholar
  207. 207.
    Ginès P, Uriz J, Calahorra B, Garcia-Tsao G, et al. Transjugular intrahepatic portosystemic shunting versus paracentesis plus albumin for refractory ascites in cirrhosis. Gastroenterology. 2002;123:1839–47.PubMedGoogle Scholar
  208. 208.
    Michl P, Gulberg V, Bilzer M, Waggershauser T, Reiser M, Gerbes AL. Transjugular intrahepatic portosystemic shunt for cirrhosis and ascites: effects in patients with organic or functional renal failure. Scand J Gastroenterol. 2000;35:654–8.PubMedGoogle Scholar
  209. 209.
    Marcela K. Hepatorenal syndrome. World J Gastroenterol. 2012;18(36):4978–84.Google Scholar
  210. 210.
    Fasolato S, Angeli P, Dallagnese L, et al. Renal failure and bacterial infections in patients with cirrhosis: epidemiology and clinical features. Hepatology. 2007;45:223–9.PubMedGoogle Scholar
  211. 211.
    Thabut D, Massard J, Gangloff A, et al. Model for end-stage liver disease score and systemic inflammatory response are major prognostic factors in patients with cirrhosis and acute functional renal failure. Hepatology. 2007;46:1872–82.PubMedGoogle Scholar
  212. 212.
    Dundar HZ, Yılmazlar T, et al. Management of hepatorenal syndrome. World J Nephrol. 2015 May 6;4(2):277–86.PubMedPubMedCentralGoogle Scholar
  213. 213.
    Fernandez J, Navasa M, Planas R, et al. Primary prophylaxis of spontaneous bacterial peritonitis delays hepatorenal syndrome and improves survival in cirrhosis. Gastroenterology. 2007;133:818–24.PubMedPubMedCentralGoogle Scholar
  214. 214.
    Huang K, Hu JH, Wang HF, He WP, Chen J, Duan XZ, Zhang AM, Liu XY. Survival and prognostic factors in hepatitis B virus-related acute-on-chronic liver failure. World J Gastroenterol. 2011;17(29):3448–52.PubMedPubMedCentralGoogle Scholar
  215. 215.
    Kaufman CE, Mckee PA. Essentials of pathophysiology. 1st ed. Beijing: Peaking Union Medical College Press; 2002. p. 547.Google Scholar
  216. 216.
    Jianzhi W, Huiming J. Textbook of pathophysiology. 1st ed. Beijing: People’s Medical Publishing House; 2007. p. 13.Google Scholar
  217. 217.
    Juha P Kokko. Disorder of fluid volume, electrolyte, and acid-base balance. J Claude Bennett, FredPlum. Cecil textbook of medicine. 20th ed. W.B.Saunders company, 1996, 525.Google Scholar
  218. 218.
    Henriksen JH, Bendtsen F, Møller S. Acid-base disturbance in patients with cirrhosis: relation to hemodynamic dysfunction. Eur J Gastroenterol Hepatol. 2015 Aug;27(8):920–7.PubMedGoogle Scholar
  219. 219.
    Benjaminov FS. The pathophysiology of ascites formation in cirrhosis of the liver. Harefuah. 2002 Aug;141(8):721–5.PubMedGoogle Scholar
  220. 220.
    Verbalis JG, Goldsmith SR, Greenberg A, Korzelius C, Schrier RW, Sterns RH, Thompson CJ. Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. Am J Med. 2013 Oct;126(10 Suppl 1):S1–42.PubMedGoogle Scholar
  221. 221.
    Cárdenas A, Solà E, Rodríguez E, Barreto R, Graupera I, Pavesi M, Saliba F, Welzel T, Martinez-Gonzalez J, Gustot T, Bernardi M, Arroyo V, Ginès P; CANONIC study investigators of the EASL-CLIF Consortium. Hyponatremia influences the outcome of patients with acute-on-chronic liver failure: an analysis of the CANONIC study. Crit Care. 2014, 18(6):700.Google Scholar
  222. 222.
    Diercks DB, Shumaik GM, Harrigan RA, Brady WJ, Chan TC. Electrocardiographic manifestations: electrolyte abnormalities. J Emerg Med. 2004;27(2):153–60.PubMedGoogle Scholar
  223. 223.
    Li XM, Li YX, Meng QH, Duan ZH, Hou W, Li J. Characteristics of acid-base balance in patients with chronic severe hepatitis: analysis of 126 cases. Zhonghua Yi Xue Za Zhi. 2006 Aug 15;86(30):2131–3(in Chinese).Google Scholar
  224. 224.
    Kaufman CE, Mckee PA. Essentials of pathophysiology. 1st ed. Beijing: Peaking Union Medical College Press; 2002. p. 569.Google Scholar
  225. 225.
    Abelow B. Understanding acid-base. 1st ed. Baltimore: Lippincott, Williams&Wilkins; 1998. p. 51.Google Scholar
  226. 226.
    Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenborn K, et al. Hepatic encephalopathy--definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology. 2002;35:716–21.PubMedPubMedCentralGoogle Scholar
  227. 227.
    (2013) [Consensus on the diagnosis and treatment of hepatic encephalopathy]. Zhonghua Gan Zang Bing Za Zhi 21: 641–651.Google Scholar
  228. 228.
    Bajaj JS, Cordoba J, Mullen KD, Amodio P, Shawcross DL, et al. Review article: the design of clinical trials in hepatic encephalopathy--an International Society for Hepatic Encephalopathy and Nitrogen Metabolism (ISHEN) consensus statement. Aliment Pharmacol Ther. 2011;33:739–47.PubMedPubMedCentralGoogle Scholar
  229. 229.
    Lauridsen MM, Poulsen L, Rasmussen CK, Hogild M, Nielsen MK, et al. Effects of common chronic medical conditions on psychometric tests used to diagnose minimal hepatic encephalopathy. Metab Brain Dis. 2016;31:267–72.PubMedPubMedCentralGoogle Scholar
  230. 230.
    Tripathi S, Tripathi YB. Hepatic encephalopathy: cause and possible management with botanicals. Recent Patents Inflamm Allergy Drug Discov. 2014;8:185–91.Google Scholar
  231. 231.
    Butterworth RF. Pathophysiology of brain dysfunction in hyperammonemic syndromes: The many faces of glutamine. Mol Genet Metab. 2014;113:113–7.Google Scholar
  232. 232.
    Prakash R, Mullen KD. Mechanisms, diagnosis and management of hepatic encephalopathy. Nat Rev Gastroenterol Hepatol. 2010;7:515–25.Google Scholar
  233. 233.
    Ott P, Vilstrup H. Cerebral effects of ammonia in liver disease: current hypotheses. Metab Brain Dis. 2014;29:901–11.Google Scholar
  234. 234.
    Jones EA, Mullen KD. Theories of the pathogenesis of hepatic encephalopathy. Clin Liver Dis. 2012;16:7–26.Google Scholar
  235. 235.
    Gooday R, Hayes PC, Bzeizi K, O’Carroll RE. Benzodiazepine receptor antagonism improves reaction time in latent hepatic encephalopathy. Psychopharmacology. 1995;119:295–8.Google Scholar
  236. 236.
    Jones EA. Ammonia, the GABA neurotransmitter system, and hepatic encephalopathy. Metab Brain Dis. 2002;17:275–81.Google Scholar
  237. 237.
    Montana V, Verkhratsky A, Parpura V. Pathological role for exocytotic glutamate release from astrocytes in hepatic encephalopathy. Curr Neuropharmacol. 2014;12:324–33.PubMedPubMedCentralGoogle Scholar
  238. 238.
    Ding S, Yang J, Liu L, Ye Y, Wang X, et al. Elevated dopamine induces minimal hepatic encephalopathy by activation of astrocytic NADPH oxidase and astrocytic protein tyrosine nitration. Int J Biochem Cell Biol. 2014;55:252–63.Google Scholar
  239. 239.
    Holecek M. Evidence of a vicious cycle in glutamine synthesis and breakdown in pathogenesis of hepatic encephalopathy-therapeutic perspectives. Metab Brain Dis. 2014;29:9–17.Google Scholar
  240. 240.
    Kobtan AA, El-Kalla FS, Soliman HH, Zakaria SS, Goda MA. Higher Grades and Repeated Recurrence of Hepatic Encephalopathy May Be Related to High Serum Manganese Levels. Biol Trace Elem Res. 2016;169:153–8.Google Scholar
  241. 241.
    Holecek M. Ammonia and amino acid profiles in liver cirrhosis: effects of variables leading to hepatic encephalopathy. Nutrition. 2015;31:14–20.Google Scholar
  242. 242.
    Shawcross DL, Wright G, Olde Damink SW, Jalan R. Role of ammonia and inflammation in minimal hepatic encephalopathy. Metab Brain Dis. 2007;22:125–38.Google Scholar
  243. 243.
    Shawcross DL, Davies NA, Williams R, Jalan R. Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J Hepatol. 2004;40:247–54.Google Scholar
  244. 244.
    Merola J, Chaudhary N, Qian M, Jow A, Barboza K, et al. Hyponatremia: a risk factor for early overt encephalopathy after transjugular intrahepatic portosystemic shunt creation. J Clin Med. 2014;3:359–72.PubMedPubMedCentralGoogle Scholar
  245. 245.
    Gaduputi V, Chandrala C, Abbas N, Tariq H, Chilimuri S, et al. Prognostic significance of hypokalemia in hepatic encephalopathy. Hepato-Gastroenterology. 2014;61:1170–4.Google Scholar
  246. 246.
    Tsai CF, Chen MH, Wang YP, Chu CJ, Huang YH, et al. Proton pump inhibitors increase risk for hepatic encephalopathy in patients with cirrhosis in population study. Gastroenterology. 2016;Google Scholar
  247. 247.
    Jepsen P, Christensen J, Weissenborn K, Watson H, Vilstrup H. Epilepsy as a risk factor for hepatic encephalopathy in patients with cirrhosis: a cohort study. BMC Gastroenterol. 2016;16:77.PubMedPubMedCentralGoogle Scholar
  248. 248.
    Casadaban LC, Parvinian A, Minocha J, Lakhoo J, Grant CW, et al. Clearing the confusion over hepatic encephalopathy after tips creation: incidence, prognostic factors, and clinical outcomes. Dig Dis Sci. 2015;60:1059–66.PubMedGoogle Scholar
  249. 249.
    Wang JY, Zhang NP, Chi BR, Mi YQ, Meng LN, et al. Prevalence of minimal hepatic encephalopathy and quality of life evaluations in hospitalized cirrhotic patients in China. World J Gastroenterol. 2013;19:4984–91.PubMedPubMedCentralGoogle Scholar
  250. 250.
    Borentain P, Soussan J, Resseguier N, Botta-Fridlund D, Dufour JC, et al. The presence of spontaneous portosystemic shunts increases the risk of complications after transjugular intrahepatic portosystemic shunt (TIPS) placement. Diagn Interv Imaging. 2016;97:643–50.Google Scholar
  251. 251.
    Nardelli S, Gioia S, Pasquale C, Pentassuglio I, Farcomeni A, et al. Cognitive impairment predicts the occurrence of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt. Am J Gastroenterol. 2016;111:523–8.Google Scholar
  252. 252.
    Brenner M, Butz M, May ES, Kahlbrock N, Kircheis G, et al. Patients with manifest hepatic encephalopathy can reveal impaired thermal perception. Acta Neurol Scand. 2015;132:156–63.Google Scholar
  253. 253.
    Kircheis G, Fleig WE, Gortelmeyer R, Grafe S, Haussinger D. Assessment of low-grade hepatic encephalopathy: a critical analysis. J Hepatol. 2007;47:642–50.Google Scholar
  254. 254.
    Hassanein TI, Hilsabeck RC, Perry W. Introduction to the Hepatic Encephalopathy Scoring Algorithm (HESA). Dig Dis Sci. 2008;53:529–38.Google Scholar
  255. 255.
    Ong JP, Aggarwal A, Krieger D, Easley KA, Karafa MT, et al. Correlation between ammonia levels and the severity of hepatic encephalopathy. Am J Med. 2003;114:188–93.Google Scholar
  256. 256.
    Qureshi MO, Khokhar N, Shafqat F. Ammonia levels and the severity of hepatic encephalopathy. J Coll Physicians Surg Pak. 2014;24:160–3.Google Scholar
  257. 257.
    Haussinger D, Schliess F. Pathogenetic mechanisms of hepatic encephalopathy. Gut. 2008;57:1156–65.Google Scholar
  258. 258.
    Dabos KJ, Parkinson JA, Sadler IH, Plevris JN, Hayes PC. (1)H nuclear magnetic resonance spectroscopy-based metabonomic study in patients with cirrhosis and hepatic encephalopathy. World J Hepatol. 2015;7:1701–7.PubMedPubMedCentralGoogle Scholar
  259. 259.
    Amodio P, Campagna F, Olianas S, Iannizzi P, Mapelli D, et al. Detection of minimal hepatic encephalopathy: normalization and optimization of the Psychometric Hepatic Encephalopathy Score. A neuropsychological and quantified EEG study. J Hepatol. 2008;49:346–53.Google Scholar
  260. 260.
    Sharma P, Sharma BC, Puri V, Sarin SK. Critical flicker frequency: diagnostic tool for minimal hepatic encephalopathy. J Hepatol. 2007;47:67–73.Google Scholar
  261. 261.
    Romero-Gomez M, Cordoba J, Jover R, del Olmo JA, Ramirez M, et al. Value of the critical flicker frequency in patients with minimal hepatic encephalopathy. Hepatology. 2007;45:879–85.Google Scholar
  262. 262.
    Olesen SS, Gram M, Jackson CD, Halliday E, Sandberg TH, et al. Electroencephalogram variability in patients with cirrhosis associates with the presence and severity of hepatic encephalopathy. J Hepatol. 2016;65:517–23.Google Scholar
  263. 263.
    Jackson CD, Gram M, Halliday E, Olesen SS, Sandberg TH, et al. New spectral thresholds improve the utility of the electroencephalogram for the diagnosis of hepatic encephalopathy. Clin Neurophysiol. 2016;127:2933–41.Google Scholar
  264. 264.
    Bajaj JS, Wade JB, Sanyal AJ. Spectrum of neurocognitive impairment in cirrhosis: Implications for the assessment of hepatic encephalopathy. Hepatology. 2009;50:2014–21.PubMedPubMedCentralGoogle Scholar
  265. 265.
    Maharshi S, Sharma BC, Sachdeva S, Srivastava S, Sharma P. Efficacy of nutritional therapy for patients with cirrhosis and minimal hepatic encephalopathy in a randomized trial. Clin Gastroenterol Hepatol. 2016;14:454–60.PubMedPubMedCentralGoogle Scholar
  266. 266.
    Amodio P, Canesso F, Montagnese S. Dietary management of hepatic encephalopathy revisited. Curr Opin Clin Nutr Metab Care. 2014;17:448–52.PubMedPubMedCentralGoogle Scholar
  267. 267.
    Sawhney R, Jalan R. Liver: the gut is a key target of therapy in hepatic encephalopathy. Nat Rev Gastroenterol Hepatol. 2015;12:7–8.PubMedPubMedCentralGoogle Scholar
  268. 268.
    Rahimi RS, Singal AG, Cuthbert JA, Rockey DC. Lactulose vs polyethylene glycol 3350--electrolyte solution for treatment of overt hepatic encephalopathy: the HELP randomized clinical trial. JAMA Intern Med. 2014;174:1727–33.PubMedPubMedCentralGoogle Scholar
  269. 269.
    Rahimi RS, Rockey DC. Novel ammonia-lowering agents for hepatic encephalopathy. Clin Liver Dis. 2015;19:539–49.PubMedPubMedCentralGoogle Scholar
  270. 270.
    Rai R, Ahuja CK, Agrawal S, Kalra N, Duseja A, et al. Reversal of low-grade cerebral edema after lactulose/rifaximin therapy in patients with cirrhosis and minimal hepatic encephalopathy. Clin Transl Gastroenterol. 2015;6:e111.PubMedPubMedCentralGoogle Scholar
  271. 271.
    Shavakhi A, Hashemi H, Tabesh E, Derakhshan Z, Farzamnia S, et al. Multistrain probiotic and lactulose in the treatment of minimal hepatic encephalopathy. J Res Med Sci. 2014;19:703–8.PubMedPubMedCentralGoogle Scholar
  272. 272.
    Morgan MY, Hawley KE. Lactitol vs. lactulose in the treatment of acute hepatic encephalopathy in cirrhotic patients: a double-blind, randomized trial. Hepatology. 1987;7:1278–84.PubMedPubMedCentralGoogle Scholar
  273. 273.
    Agrawal A, Sharma BC, Sharma P, Sarin SK. Secondary prophylaxis of hepatic encephalopathy in cirrhosis: an open-label, randomized controlled trial of lactulose, probiotics, and no therapy. Am J Gastroenterol. 2012;107:1043–50.PubMedPubMedCentralGoogle Scholar
  274. 274.
    Paik YH, Lee KS, Han KH, Song KH, Kim MH, et al. Comparison of rifaximin and lactulose for the treatment of hepatic encephalopathy: a prospective randomized study. Yonsei Med J. 2005;46:399–407.PubMedPubMedCentralGoogle Scholar
  275. 275.
    Bajaj JS, Barrett AC, Bortey E, Paterson C, Forbes WP. Prolonged remission from hepatic encephalopathy with rifaximin: results of a placebo crossover analysis. Aliment Pharmacol Ther. 2015;41:39–45.Google Scholar
  276. 276.
    Kimer N, Krag A, Moller S, Bendtsen F, Gluud LL. Systematic review with meta-analysis: the effects of rifaximin in hepatic encephalopathy. Aliment Pharmacol Ther. 2014;40:123–32.Google Scholar
  277. 277.
    Mullen KD, Sanyal AJ, Bass NM, Poordad FF, Sheikh MY, et al. Rifaximin is safe and well tolerated for long-term maintenance of remission from overt hepatic encephalopathy. Clin Gastroenterol Hepatol. 2014;e12392:1390–7.Google Scholar
  278. 278.
    Sidhu SS, Goyal O, Parker RA, Kishore H, Sood A. Rifaximin vs. lactulose in treatment of minimal hepatic encephalopathy. Liver Int. 2016;36:378–85.Google Scholar
  279. 279.
    Lunia MK, Sharma BC, Sharma P, Sachdeva S, Srivastava S. Probiotics prevent hepatic encephalopathy in patients with cirrhosis: a randomized controlled trial. Clin Gastroenterol Hepatol. 2014;12:1003–1008.e1001.Google Scholar
  280. 280.
    Saab S, Suraweera D, Au J, Saab EG, Alper TS, et al. Probiotics are helpful in hepatic encephalopathy: a meta-analysis of randomized trials. Liver Int. 2016;36:986–93.Google Scholar
  281. 281.
    Sharma P, Sharma BC, Puri V, Sarin SK. An open-label randomized controlled trial of lactulose and probiotics in the treatment of minimal hepatic encephalopathy. Eur J Gastroenterol Hepatol. 2008;20:506–11.Google Scholar
  282. 282.
    Dhiman RK, Rana B, Agrawal S, Garg A, Chopra M, et al. Probiotic VSL#3 reduces liver disease severity and hospitalization in patients with cirrhosis: a randomized, controlled trial. Gastroenterology. 2014;147:1327–37.Google Scholar
  283. 283.
    Matoori S, Leroux JC. Recent advances in the treatment of hyperammonemia. Adv Drug Deliv Rev. 2015;90:55–68.Google Scholar
  284. 284.
    Diaz-Herrero MM, del Campo JA, Carbonero-Aguilar P, Vega-Perez JM, Iglesias-Guerra F, et al. THDP17 decreases ammonia production through glutaminase inhibition. A new drug for hepatic encephalopathy therapy. PLoS One. 2014;9:e109787.PubMedPubMedCentralGoogle Scholar
  285. 285.
    Gluud LL, Vilstrup H, Morgan MY (2016) Non-absorbable disaccharides versus placebo/no intervention and lactulose versus lactitol for the prevention and treatment of hepatic encephalopathy in people with cirrhosis. Cochrane Database Syst Rev: Cd003044.Google Scholar
  286. 286.
    Cauli O, Rodrigo R, Piedrafita B, Boix J, Felipo V. Inflammation and hepatic encephalopathy: ibuprofen restores learning ability in rats with portacaval shunts. Hepatology. 2007;46:514–9.Google Scholar
  287. 287.
    Poo JL, Gongora J, Sanchez-Avila F, Aguilar-Castillo S, Garcia-Ramos G, et al. Efficacy of oral L-ornithine-L-aspartate in cirrhotic patients with hyperammonemic hepatic encephalopathy. Results of a randomized, lactulose-controlled study. Ann Hepatol. 2006;5:281–8.Google Scholar
  288. 288.
    Rockey DC, Vierling JM, Mantry P, Ghabril M, Brown RS Jr, et al. Randomized, double-blind, controlled study of glycerol phenylbutyrate in hepatic encephalopathy. Hepatology. 2014;59:1073–83.PubMedPubMedCentralGoogle Scholar
  289. 289.
    Mousa N, Abdel-Razik A, Zaher A, Hamed M, Shiha G, et al. The role of antioxidants and zinc in minimal hepatic encephalopathy: a randomized trial. Therap Adv Gastroenterol. 2016;9:684–91.PubMedPubMedCentralGoogle Scholar
  290. 290.
    Abdelaziz RR, Elkashef WF, Said E. Tranilast reduces serum IL-6 and IL-13 and protects against thioacetamide-induced acute liver injury and hepatic encephalopathy. Environ Toxicol Pharmacol. 2015;40:259–67.Google Scholar
  291. 291.
    Blei AT. Is it worth removing albumin-bound substances in hepatic encephalopathy? Z Gastroenterol. 2001;39(Suppl 2):8.Google Scholar
  292. 292.
    Gluud LL, Dam G, Les I, Cordoba J, Marchesini G, et al. (2015) Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst Rev: Cd001939.Google Scholar
  293. 293.
    Morgan MY, Blei A, Grungreiff K, Jalan R, Kircheis G, et al. The treatment of hepatic encephalopathy. Metab Brain Dis. 2007;22:389–405.Google Scholar
  294. 294.
    Ahboucha S, Butterworth RF. The neurosteroid system: implication in the pathophysiology of hepatic encephalopathy. Neurochem Int. 2008;52:575–87.Google Scholar
  295. 295.
    Torres-Vega MA, Vargas-Jeronimo RY, Montiel-Martinez AG, Munoz-Fuentes RM, Zamorano-Carrillo A, et al. Delivery of glutamine synthetase gene by baculovirus vectors: a proof of concept for the treatment of acute hyperammonemia. Gene Ther. 2015;22:58–64.Google Scholar
  296. 296.
    Bai M, He C, Yin Z, Niu J, Wang Z, et al. Randomised clinical trial: L-ornithine-L-aspartate reduces significantly the increase of venous ammonia concentration after TIPSS. Aliment Pharmacol Ther. 2014;40:63–71.Google Scholar
  297. 297.
    Luo L, Fu S, Zhang Y, Wang J. Early diet intervention to reduce the incidence of hepatic encephalopathy in cirrhosis patients: post-Transjugular Intrahepatic Portosystemic Shunt (TIPS) findings. Asia Pac J Clin Nutr. 2016;25:497–503.Google Scholar
  298. 298.
    Lynn AM, Singh S, Congly SE, Khemani D, Johnson DH, et al. Embolization of portosystemic shunts for treatment of medically refractory hepatic encephalopathy. Liver Transpl. 2016;22:723–31.PubMedPubMedCentralGoogle Scholar
  299. 299.
    Hung PC, Wang HS, Hsia SH, Wong AM. Plasmapheresis as adjuvant therapy in Stevens-Johnson syndrome and hepatic encephalopathy. Brain and Development. 2014;36:356–8.Google Scholar
  300. 300.
    Wong RJ, Gish RG, Ahmed A. Hepatic encephalopathy is associated with significantly increased mortality among patients awaiting liver transplantation. Liver Transpl. 2014;20:1454–61.Google Scholar
  301. 301.
    Atluri DK, Asgeri M, Mullen KD. Reversibility of hepatic encephalopathy after liver transplantation. Metab Brain Dis. 2010;25:111–3.Google Scholar
  302. 302.
    Fallon MB, Abrams GA. Pulmonary dysfunction in chronic liver disease. Hepatology. 2000;32(4 Pt 1):859–65.PubMedGoogle Scholar
  303. 303.
    Lange PA, Stoller JK. The hepatopulmonary syndrome. Ann Intern Med. 1995;122(7):521–9.PubMedGoogle Scholar
  304. 304.
    Ford RM, Sakaria SS, Subramanian RM. Critical care management of patients before liver transplantation. Transplant Rev (Orlando). 2010;24(4):190–206.Google Scholar
  305. 305.
    Fuhrmann V, Jager B, Zubkova A, Drolz A. Hypoxic hepatitis - epidemiology, pathophysiology and clinical management. Wien Klin Wochenschr. 2010;122(5–6):129–39.PubMedGoogle Scholar
  306. 306.
    Breuer O, Shteyer E, Wilschanski M, Perles Z, Cohen-Cymberknoh M, Kerem E, Shoseyov D. Hepatopulmonary Syndrome in Patients With Cystic Fibrosis and Liver Disease. Chest. 2016;149(2):e35–8.PubMedGoogle Scholar
  307. 307.
    Pouriki S, Alexopoulou A, Chrysochoou C, Raftopoulos L, Papatheodoridis G, Stefanadis C, Pectasides D. Left ventricle enlargement and increased systolic velocity in the mitral valve are indirect markers of the hepatopulmonary syndrome. Liver Int. 2011;31(9):1388–94.PubMedGoogle Scholar
  308. 308.
    Rodriguez-Roisin R, Krowka MJ. Hepatopulmonary syndrome--a liver-induced lung vascular disorder. N Engl J Med. 2008;358(22):2378–87.PubMedGoogle Scholar
  309. 309.
    Zhang ZJ, Yang CQ. Progress in investigating the pathogenesis of hepatopulmonary syndrome. Hepatobiliary Pancreat Dis Int. 2010;9(4):355–60.PubMedGoogle Scholar
  310. 310.
    Schenk P, Schoniger-Hekele M, Fuhrmann V, Madl C, Silberhumer G, Muller C. Prognostic significance of the hepatopulmonary syndrome in patients with cirrhosis. Gastroenterology. 2003;125(4):1042–52.PubMedGoogle Scholar
  311. 311.
    Swanson KL, Wiesner RH, Krowka MJ. Natural history of hepatopulmonary syndrome: Impact of liver transplantation. Hepatology. 2005;41(5):1122–9.PubMedGoogle Scholar
  312. 312.
    Hoeper MM, Krowka MJ, Strassburg CP. Portopulmonary hypertension and hepatopulmonary syndrome. Lancet. 2004;363(9419):1461–8.PubMedGoogle Scholar
  313. 313.
    Schenk P, Fuhrmann V, Madl C, Funk G, Lehr S, Kandel O, Muller C. Hepatopulmonary syndrome: prevalence and predictive value of various cut offs for arterial oxygenation and their clinical consequences. Gut. 2002;51(6):853–9.PubMedPubMedCentralGoogle Scholar
  314. 314.
    Krowka MJ, Fallon MB, Kawut SM, Fuhrmann V, Heimbach JK, Ramsay MA, Sitbon O, Sokol RJ. International Liver Transplant Society Practice Guidelines: Diagnosis and Management of Hepatopulmonary Syndrome and Portopulmonary Hypertension. Transplantation. 2016;100(7):1440–52.PubMedGoogle Scholar
  315. 315.
    Krowka MJ. Hepatopulmonary syndrome: monitoring at your fingertip. Dig Dis Sci. 2011;56(6):1599–600.PubMedGoogle Scholar
  316. 316.
    Naeije R. Hepatopulmonary syndrome and portopulmonary hypertension. Swiss Med Wkly. 2003;133(11–12):163–9.PubMedGoogle Scholar
  317. 317.
    Goldberg DS, Fallon MB. The Art and Science of Diagnosing and Treating Lung and Heart Disease Secondary to Liver Disease. Clin Gastroenterol Hepatol. 2015;13(12):2118–27.PubMedPubMedCentralGoogle Scholar
  318. 318.
    Cuadrado A, Diaz A, Iruzubieta P, Salcines JR, Crespo J. Hepatopulmonary syndromeGastroenterol Hepatol. 2015;38(6):398–408.PubMedGoogle Scholar
  319. 319.
    Mukaida N, Ishikawa Y, Ikeda N, Fujioka N, Watanabe S, Kuno K, Matsushima K. Novel insight into molecular mechanism of endotoxin shock: biochemical analysis of LPS receptor signaling in a cell-free system targeting NF-kappaB and regulation of cytokine production/action through beta2 integrin in vivo. J Leukoc Biol. 1996 Feb;59(2):145–51.PubMedGoogle Scholar
  320. 320.
    Raetz CR, Ulevitch RJ, Wright SD, Sibley CH, Ding A, Nathan CF. Gram-negative endotoxin: an extraordinary lipid with profound effects on eukaryotic signal transduction. FASEB J. 1991;5:2652–60.PubMedGoogle Scholar
  321. 321.
    Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature. 2007 Oct 18;449(7164):819–26.PubMedGoogle Scholar
  322. 322.
    Raetz CRH. Biochemistry of endotoxins. Annu Annu Rev Biochem. 1990;59:129–70.PubMedGoogle Scholar
  323. 323.
    Giuliani A, Pirri G, Rinaldi AC. Antimicrobial peptides: the LPS connection. Methods Mol Biol. 2010;618:137–54.PubMedGoogle Scholar
  324. 324.
    Magalhães PO, Lopes AM, Mazzola PG, Rangel-Yagui C, Penna TC, Pessoa A Jr. Methods of endotoxin removal from biological preparations: a review. J Pharm Pharm Sci. 2007;10(3):388–404.PubMedGoogle Scholar
  325. 325.
    Eckburg PB, Bik EM, Bernstein CN. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–8.PubMedPubMedCentralGoogle Scholar
  326. 326.
    Cullen TW, Schofield WB, Barry NA, Putnam EE, Rundell EA, Trent MS, Degnan PH, Booth CJ, Yu H, Goodman AL. Gut microbiota. Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation. Science. 2015 Jan 9;347(6218):170–5.PubMedPubMedCentralGoogle Scholar
  327. 327.
    Janelsins BM, Lu M, Datta SK. Altered inactivation of commensal LPS due to acyloxyacyl hydrolase deficiency in colonic dendritic cells impairs mucosal Th17 immunity. Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):373–378.Google Scholar
  328. 328.
    Landsberger M, Zhou J, Wilk S, Thaumüller C, Pavlovic D, Otto M, Whynot S, Hung O, Murphy MF, Cerny V, Felix SB, Lehmann C. Inhibition of lectin-like oxidized low-density lipoprotein receptor-1 reduces leukocyte adhesion within the intestinal microcirculation in experimental endotoxemia in rats. Crit Care. 2010;14(6):R223. doi: 10PubMedPubMedCentralGoogle Scholar
  329. 329.
    Griffiths KL, Tan JK, O’Neill HC. Characterization of the effect of LPS on dendritic cell subset discrimination in spleen. J Cell Mol Med. 2014;18(9):1908–12.PubMedPubMedCentralGoogle Scholar
  330. 330.
    Nguyen DN, Jiang P, Jacobsen S, Sangild PT, Bendixen E, Chatterton DE. Protective effects of transforming growth factor β2 in intestinal epithelial cells by regulation of proteins associated with stress and endotoxin responses. PLoS One. 2015;10(2):e0117608.PubMedPubMedCentralGoogle Scholar
  331. 331.
    Thompson PA, Kitchens RL. Native high-density lipoprotein augments monocyte responses to lipopolysaccharide (LPS) by suppressing the inhibitory activity of LPS-binding protein. J Immunol. 2006;177(7):4880–7.PubMedGoogle Scholar
  332. 332.
    Strandberg KL, Richards SM, Tamayo R, Reeves LT, Gunn JS. An altered immune response, but not individual cationic antimicrobial peptides, is associated with the oral attenuation of Ara4N-deficient Salmonella enterica serovar Typhimurium in mice. PLoS One. 2012;7(11):e49588.PubMedPubMedCentralGoogle Scholar
  333. 333.
    Mehrzad J, Dosogne H, De Spiegeleer B, Duchateau L, Burvenich C. Bovine blood neutrophil acyloxyacyl hydrolase (AOAH) activity during endotoxin and coliform mastitis. Vet Res. 2007;38(5):655–68.PubMedGoogle Scholar
  334. 334.
    Schmiel DH, Moran EE, Keiser PB, Brandt BL, Zollinger WD. Importance of antibodies to lipopolysaccharide in natural and vaccine-induced serum bactericidal activity against Neisseria meningitidis group B. Infect Immun. 2011 Oct;79(10):4146–56.PubMedPubMedCentralGoogle Scholar
  335. 335.
    E Ravikumar V, Shivashangari KS, Devaki T Effect of Tridax procumbens on liver antioxidant defense system during lipopolysaccharide-induced hepatitis in D-galactosamine sensitised rats. Mol Cell Biochem 2005;269(1–2):131–136.PubMedGoogle Scholar
  336. 336.
    Zhou H, Liang H, Li ZF, Xiang H, Liu W, Li JG. Vagus nerve stimulation attenuates intestinal epithelial tight junctions disruption in endotoxemic mice through α7 nicotinic acetylcholine receptors. Shock. 2013;40(2):144–51.PubMedGoogle Scholar
  337. 337.
    Hayani KC, Guerrero ML, Ruiz-Palacios GM, Gomez HF, Cleary TG. Evidence for long-term memory of the mucosal immune system: milk secretory immunoglobulin A against Shigella lipopolysaccharides. J ClinMicrobiol. 1991 Nov;29(11):2599–603.Google Scholar
  338. 338.
    Wang JH, Bose S, Kim GC, Hong SU, Kim JH, Kim JE, Kim H. Flos Lonicera ameliorates obesity and associated endotoxemia in rats through modulation of gut permeability and intestinal microbiota. PLoS One. 2014;9(1):e86117.PubMedPubMedCentralGoogle Scholar
  339. 339.
    Wang H, Xu DX, Lv JW, Ning H, Wei W. Melatonin attenuates lipopolysaccharide (LPS)-induced apoptotic liver damage in D-galactosamine-sensitized mice. Toxicology. 2007;237(1–3):49–57.PubMedGoogle Scholar
  340. 340.
    JeralaR. Structural biology of the LPS recognition. Int J Med Microbiol 2007;297(5):353–363.Google Scholar
  341. 341.
    Wen M, Ma X, Cheng H, Jiang W, Xu X, Zhang Y, Zhang Y, Guo Z, Yu Y, Xu H, Qian C, Cao X, An H. Stk38 protein kinase preferentially inhibits TLR9-activated inflammatory responses by promoting MEKK2 ubiquitination in macrophages. Nat Commun. 2015;6:7167.PubMedGoogle Scholar
  342. 342.
    McDonald B, Jenne CN, Zhuo L, Kimata K, Kubes P. Kupffer cells and activation of endothelial TLR4 coordinate neutrophil adhesion within liver sinusoids during endotoxemia. Am J Physiol Gastrointest Liver Physiol. 2013;305(11):G797–806.PubMedGoogle Scholar
  343. 343.
    Barquero-Calvo E, Mora-Cartín R, Arce-Gorvel V, de Diego JL, Chacón-Díaz C, Chaves-Olarte E, Guzmán-Verri C, Buret AG, Gorvel JP, Moreno E. Brucella abortus induces the premature death of human neutrophils through the action of its lipopolysaccharide. PLoS Pathog. 2015;11(5):e1004853.PubMedPubMedCentralGoogle Scholar
  344. 344.
    Zullo JA, Nadel EP, Rabadi MM, Baskind MJ, Rajdev MA, Demaree CM, Vasko R, Chugh SS, Lamba R, Goligorsky MS, Ratliff BB. The secretome of hydrogel-coembedded endothelial progenitor cells and mesenchymal stem cells instructs macrophage polarization in endotoxemia. Stem Cells Transl Med 2015 May 6. pii: sctm.2014-0111.Google Scholar
  345. 345.
    Zhang Y, Lu Y, Ma L, Cao X, Xiao J, Chen J, Jiao S, Gao Y, Liu C, Duan Z, Li D, He Y, Wei B, Wang H. Activation of vascular endothelial growth factor receptor-3 in macrophages restrains TLR4-NF-κB signaling and protects against endotoxin shock. Immunity. 2014;40(4):501–14.PubMedGoogle Scholar
  346. 346.
    Kaukonen KM, Bailey M, Pilcher D, Cooper DJ, Bellomo R. Systemic inflammatory response syndrome criteria in defining severe sepsis. N Engl J Med. 2015;372(17):1629–38.Google Scholar
  347. 347.
    La Mura V, Pasarín M, Rodriguez-Vilarrupla A, García-Pagán JC, Bosch J, Abraldes JG. Liver sinusoidal endothelial dysfunction after LPS administration: a role for inducible-nitric oxide synthase. J Hepatol. 2014;61(6):1321–7.PubMedGoogle Scholar
  348. 348.
    Feng A, Zhou G, Yuan X, Huang X, Zhang Z, Zhang T. Inhibitory effect of baicalin on iNOS and NO expression in intestinal mucosa of rats with acute endotoxemia. PLoS One. 2013;8(12):e80997.PubMedPubMedCentralGoogle Scholar
  349. 349.
    Han DW. Intestinal endotoxemia as a pathogenetic mechanism in liver failure. World J Gastroenterol. 2002;8(6):961–5.PubMedPubMedCentralGoogle Scholar
  350. 350.
    Lv X, Song JG, Li HH, Ao JP, Zhang P, Li YS, Song SL, Wang XR. Decreased hepatic peroxisome proliferator-activated receptor-γ contributes to increased sensitivity to endotoxin in obstructive jaundice. World J Gastroenterol. 2011;17(48):5267–73.PubMedPubMedCentralGoogle Scholar
  351. 351.
    Armstrong MT, Rickles FR, Armstrong PB. Capture of lipopolysaccharide (endotoxin) by the blood clot: a comparative study. PLoS One. 2013;8(11):e80192.PubMedPubMedCentralGoogle Scholar
  352. 352.
    Tarao K. So K, Moroi T, Ikeuchi T, Suyama T. Detection of endotoxin in plasma and ascitic fluid of patients with cirrhosis: its clinical significance. Gastroenterology. 1977;73(3):539–42.PubMedGoogle Scholar
  353. 353.
    Zijlstra JG, Tulleken JE, Ligtenberg JJ, de Boer P, van der Werf TS. p38-MAPK inhibition and endotoxin induced tubular dysfunction in men. J Endotoxin Res. 2004;10(6):402–5.PubMedGoogle Scholar
  354. 354.
    Chastre A, Bélanger M, Nguyen BN, Butterworth RF. Lipopolysaccharide precipitates hepatic encephalopathy and increases blood-brain barrier permeability in mice with acute liver failure. Liver Int. 2014 Mar;34(3):353–61.PubMedGoogle Scholar
  355. 355.
    Cruz DN, Antonelli M, Fumagalli R, Foltran F, Brienza N, Donati A, Malcangi V, Petrini F, Volta G, BobbioPallavicini FM, Rottoli F, Giunta F, Ronco C. Early use of polymyxin B hemoperfusion in abdominal septic shock: The EUPHAS randomized controlled trial. JAMA. 2009;301:2445–52.PubMedGoogle Scholar
  356. 356.
    Yoshino N, Endo M, Kanno H, et al. Polymyxins as novel and safe mucosal adjuvants to induce humoral immune responses in mice. PLoS One. 2013;8(4):e61643.PubMedPubMedCentralGoogle Scholar
  357. 357.
    Verhoef J, Visser MR. Neutrophil phagocytosis and killing: normal function and microbial evasion. The neutrophil; 1993. p. 109–37.Google Scholar
  358. 358.
    Baumberger C, Ulevitch RJ, Dayer JM. Modulation of endotoxic activity of lipopolysaccharide by high-density lipoprotein. Pathobiology. 1991;59:378–83.PubMedGoogle Scholar
  359. 359.
    Wittebole X, Castanares-Zapatero D, Laterre PF. Toll-like receptor 4 modulation as a strategy to treat sepsis. Mediat Inflamm. 2010;2010:568396.Google Scholar
  360. 360.
    Zanoni I, Ostuni R, Marek LR, et al. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell. 2011;147(4):868–80.PubMedPubMedCentralGoogle Scholar
  361. 361.
    Michlewska S, Dransfield I, Megson IL, et al. Macrophage phagocytosis of apoptotic neutrophils is critically regulated by the opposing actions of pro-inflammatory and anti-inflammatory agents: key role for TNF-α. FASEB J. 2009;23(3):844–54.PubMedGoogle Scholar
  362. 362.
    Baue AE. MOF, MODS, and SIRS: what is in a name or an acronym? Shock. 2006;26(5):438–49.PubMedGoogle Scholar
  363. 363.
    Bone RC, Sibbald WJ, Sprung CL. The ACCP-SCCM consensus conference on sepsis and organ failure. Chest J. 1992;101(6):1481–3.Google Scholar
  364. 364.
    Hunter JD, Doddi M. Sepsis and the heart. Br J Anaesth. 2010;104(1):3–11.PubMedGoogle Scholar
  365. 365.
    Brigham KL, Meyrick B. Endotoxin and lung injury. Am Rev Respir Dis. 1986;133(5):913–27.PubMedGoogle Scholar
  366. 366.
    Nolan JP. The role of intestinal endotoxin in liver injury: a long and evolving history. Hepatology. 2010;52(5):1829–35.PubMedGoogle Scholar
  367. 367.
    Wan L, Bagshaw SM, Langenberg C, Saotome T, May C, Bellomo R. Pathophysiology of septic acute kidney injury: What do we really know? Crit Care Med. 2008;36:S198–203.PubMedGoogle Scholar
  368. 368.
    Semeraro N, Ammollo CT, Semeraro F, et al. Sepsis, thrombosis and organ dysfunction. Thromb Res. 2012;129(3):290–5.PubMedGoogle Scholar
  369. 369.
    Yang R, Miki K, Oksala N, et al. Bile high-mobility group box 1 contributes to gut barrier dysfunction in experimental endotoxemia. Am J Phys Regul Integr Comp Phys. 2009;297(2):R362–9.Google Scholar

Copyright information

© Springer Nature B.V. and Huazhong University of Science and Technology Press 2019

Authors and Affiliations

  • Jian-Xin Song
    • 1
  • Lin Zhu
    • 1
  • Chuan-Long Zhu
    • 2
  • Jin-Hua Hu
    • 3
  • Zi-Jian Sun
    • 3
  • Xiang Xu
    • 3
  • Min-You Xin
    • 1
  • Qiong-Fang Zhang
    • 4
  • Da-Zhi Zhang
    • 4
  • Jia Shang
    • 5
  • Jia-Quan Huang
    • 1
  • Dong Xu
    • 1
  1. 1.Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
  2. 2.Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
  3. 3.Beijing 302 HospitalBeijingChina
  4. 4.The Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
  5. 5.Henan Provincial People’s HospitalZhengzhou ShiChina

Personalised recommendations