Advertisement

Clinical Manifestations and Laboratory Tests of AECHB and Severe Hepatitis (Liver Failure)

  • Liang Peng
  • Zhi-Liang Gao
  • Yu-Ming Wang
  • Deng-Ming He
  • Jing-Ming Zhao
  • Xue-Fan Bai
  • Xiao-Jing Wang
Chapter

Abstract

This chapter describes the clinical symptoms and signs of AECHB and HBV ACLF, classification, grading of HBV ACLF and their features, diagnostic principles and standards in liver pathology, biochemistry, and virology of HBV ACLF.
  1. 1.

    Liver failure is defined as serious damage to the liver cause by a variety of etiologies, leading to liver function disorder or even decompensation, and clinical syndromes with coagulopathy, jaundice, hepatic encephalopathy, and ascites.

     
  2. 2.

    Severe hepatitis B can be indicated pathologically by apparent hepatocellular necrosis, including extensive multifocal, confluent, bridging, sub-massive or massive necrosis.

     
  3. 3.

    Laboratory tests during the course of severe exacerbation of chronic hepatitis B can reflect pathological changes and liver function in a timely manner, providing objective and informative reference data for evaluation of disease severity and treatment efficacy. Among the most important laboratory tests are those for prothrombin activity, international normalized ratio, and increases in total bilirubin concentration.

     
  4. 4.

    Severe hepatitis B is associated with interactions between the virus and host factors. Detection of HBV DNA, HBV genotype, quasispecies and HBV mutation can provide important theoretical bases for the prevention, control or mitigation of the progress of severe hepatitis B.

     
  5. 5.

    Noninvasive imaging modalities can be used to visualize the entire liver and parts of it. Measuring liver volume to evaluate liver size and liver reserve capacity is regarded as important in diagnosis, surgical approach and prognostic evaluation of patients with severe exacerbation of chronic hepatitis B and liver failure.

     
  6. 6.

    Model for End-Stage Liver Disease (MELD) is the first quantitative method developed to assess whether a patient with liver failure requires a liver transplant. The predictive value of the MELD model has been improved by the MELD-Na, iMELD, and MESO models. Several other valuable prognostic models have been developed. For example, for patients with HBV-ACLF, the established TPPM scoring system was found to be more predictive than MELD score.

     

References

  1. 1.
    Gan Z, Bing Z, Za Z. Diagnostic and treatment guidelines for liver failure. Chinese J Hepatol. 2006;14(9):643–6. (Article in Chinese)Google Scholar
  2. 2.
    Lin CL, Kao JH. The clinical implications of hepatitis B virus genotype: recent advances. J Gastroenterol Hepatol. 2011;26(Suppl 1):123–30.PubMedCrossRefGoogle Scholar
  3. 3.
    Tran TT, Trinh TN, Abe K. New complex recombinant genotype of hepatitis B virus identified in Vietnam. J Virol. 2008;82(11):5657–63.PubMedCrossRefGoogle Scholar
  4. 4.
    Olinger CM, Jutavijittum P, Hubschen JM, et al. Possible new hepatitis B virus genotype, Southeast Asia. Emerg Infect Dis. 2008;14(11):1777–80.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Kurbanov F, Tanaka Y, Kramvis A, et al. When should “I” consider a new hepatitis B virus genotype? J Virol. 2008;82(16):8241–2.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Tatematsu K, Tanaka Y, Kurbanov F, et al. A genetic variant of hepatitis B virus divergent from known human and ape genotypes isolated from a Japanese patient and provisionally assigned to new genotype J. J Virol. 2009;83(20):10538–47.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Wai CT, Fontana RJ, Polson J, et al. Clinical outcome and virological characteristics of hepatitis B-related acute liver failure in the United States. J Viral Hepat. 2005;12(2):192–8.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ozasa A, Tanaka Y, Orito E, et al. Influence of genotypes and precore mutations on fulminant or chronic outcome of acute hepatitis B virus infection. Hepatology. 2006;44(2):326–34.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Umemura T, Tanaka E, Kiyosawa K, et al. Mortality secondary to fulminant hepatic failure in patients with prior resolution of hepatitis B virus infection in Japan. Clin Infect Dis. 2008;47(5):e52–6.PubMedCrossRefGoogle Scholar
  10. 10.
    You J, Sriplung H, Chongsuvivatwong V, et al. Profile, spectrum and significance of hepatitis B virus genotypes in chronic HBV-infected patients in Yunnan, China. Hepatobiliary Pancreat Dis Int. 2008;7(3):271–9.PubMedGoogle Scholar
  11. 11.
    Liu CJ, Kao JH, Lai MY, et al. Precore/core promoter mutations and genotypes of hepatitis B virus in chronic hepatitis B patients with fulminant or subfulminant hepatitis. J Med Virol. 2004;72(4):545–50.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhong YW, Li J, Song HB, et al. Virologic and clinical characteristics of HBV genotypes/subgenotypes in 487 Chinese pediatric patients with CHB. BMC Infect Dis. 2011;11:262.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Domingo E, Gomez J. Quasispecies and its impact on viral hepatitis. Virus Res. 2007;127(2):131–50.PubMedCrossRefGoogle Scholar
  14. 14.
    Harrison TJ. Hepatitis B virus: molecular virology and common mutants. Semin Liver Dis. 2006;26(2):87–96.PubMedCrossRefGoogle Scholar
  15. 15.
    Chen MT, Billaud JN, Sallberg M, et al. A function of the hepatitis B virus precore protein is to regulate the immune response to the core antigen. Proc Natl Acad Sci U S A. 2004;101(41):14913–8.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Park YN, Han KH, Kim KS, et al. Cytoplasmic expression of hepatitis B core antigen in chronic hepatitis B virus infection: role of precore stop mutants. Liver. 1999;19(3):199–205.CrossRefPubMedGoogle Scholar
  17. 17.
    Chan HL, Hussain M, Lok AS. Different hepatitis B virus genotypes are associated with different mutations in the core promoter and precore regions during hepatitis B e antigen seroconversion. Hepatology. 1999;29(3):976–84.PubMedCrossRefGoogle Scholar
  18. 18.
    Tong S, Kim KH, Chante C, et al. Hepatitis B virus e antigen variants. Int J Med Sci. 2005;2(1):2–7.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Baumert TF, Rogers SA, Hasegawa K, et al. Two core promoter mutations identified in a hepatitis B virus strain associated with fulminant hepatitis result in enhanced viral replication. J Clin Invest. 1996;98(10):2268–76.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Gunther S, Piwon N, Iwanska A, et al. Type, prevalence, and significance of core promoter/enhancer II mutations in hepatitis B viruses from immunosuppressed patients with severe liver disease. J Virol. 1996;70(12):8318–31.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Kaneko M, Uchida T, Moriyama M, et al. Probable implication of mutations of the X open reading frame in the onset of fulminant hepatitis B. J Med Virol. 1995;47(3):204–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Yin J, Xie J, Liu S, et al. Association between the various mutations in viral core promoter region to different stages of hepatitis B, ranging of asymptomatic carrier state to hepatocellular carcinoma. Am J Gastroenterol. 2011;106(1):81–92.PubMedCrossRefGoogle Scholar
  23. 23.
    Kim D, Lyoo KS, Smith D, et al. Number of mutations within CTL-defined epitopes of the hepatitis B virus (HBV) core region is associated with HBV disease progression. J Med Virol. 2011;83(12):2082–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Pollicino T, Zanetti AR, Cacciola I, et al. Pre-S2 defective hepatitis B virus infection in patients with fulminant hepatitis. Hepatology. 1997;26(2):495–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu S, Zhang H, Gu C, et al. Associations between hepatitis B virus mutations and the risk of hepatocellular carcinoma: a meta-analysis. J Natl Cancer Inst. 2009;101(15):1066–82.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Teo CG, Locarnini SA. Potential threat of drug-resistant and vaccine-escape HBV mutants to public health. Antivir Ther. 2010;15(3 Pt B):445–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Chen L, Zhang Q, Yu DM, et al. Early changes of hepatitis B virus quasispecies during lamivudine treatment and the correlation with antiviral efficacy. J Hepatol. 2009;50(5):895–905.PubMedCrossRefGoogle Scholar
  28. 28.
    Dupouey J, Gerolami R, Solas C, et al. Hepatitis B virus variant with the a194t substitution within reverse transcriptase before and under adefovir and tenofovir therapy. Clin Res Hepatol Gastroenterol. 2012;36(2):e26–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Torresi J, Earnest-Silveira L, Civitico G, et al. Restoration of replication phenotype of lamivudine-resistant hepatitis B virus mutants by compensatory changes in the “fingers” subdomain of the viral polymerase selected as a consequence of mutations in the overlapping S gene. Virology. 2002;299(1):88–99.PubMedCrossRefGoogle Scholar
  30. 30.
    Bottecchia M, Ikuta N, Niel C, et al. Lamivudine resistance and other mutations in the polymerase and surface antigen genes of hepatitis B virus associated with a fatal hepatic failure case. J Gastroenterol Hepatol. 2008;23(1):67–72.CrossRefPubMedGoogle Scholar
  31. 31.
    Lampertico P, Vigano M, Manenti E, et al. Adefovir rapidly suppresses hepatitis B in HBeAg-negative patients developing genotypic resistance to lamivudine. Hepatology. 2005;42(6):1414–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Fung J, Lai CL, Yuen JC, et al. Adefovir dipivoxil monotherapy and combination therapy with lamivudine for the treatment of chronic hepatitis B in an Asian population. Antivir Ther. 2007;12(1):41–6.PubMedGoogle Scholar
  33. 33.
    Van Bommel F, Wunsche T, Mauss S, et al. Comparison of adefovir and tenofovir in the treatment of lamivudine-resistant hepatitis B virus infection. Hepatology. 2004;40(6):1421–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Tenney DJ, Rose RE, Baldick CJ, et al. Two-year assessment of entecavir resistance in lamivudine-refractory hepatitis B virus patients reveals different clinical outcomes depending on the resistance substitutions present. Antimicrob Agents Chemother. 2007;51(3):902–11.PubMedCrossRefGoogle Scholar
  35. 35.
    Seifer M, Patty A, Serra I, et al. Telbivudine, a nucleoside analog inhibitor of HBV polymerase, has a different in vitro cross-resistance profile than the nucleotide analog inhibitors adefovir and tenofovir. Antivir Res. 2009;81(2):147–55.PubMedCrossRefGoogle Scholar
  36. 36.
    Zoulim F, Locarnini S. Management of treatment failure in chronic hepatitis B. J Hepatol. 2012;56(Suppl 1):S112–22.PubMedCrossRefGoogle Scholar
  37. 37.
    Angus P, Vaughan R, Xiong S, et al. Resistance to adefovir dipivoxil therapy associated with the selection of a novel mutation in the HBV polymerase. Gastroenterology. 2003;125(2):292–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Villeneuve JP, Durantel D, Durantel S, et al. Selection of a hepatitis B virus strain resistant to adefovir in a liver transplantation patient. J Hepatol. 2003;39(6):1085–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Brunelle MN, Jacquard AC, Pichoud C, et al. Susceptibility to antivirals of a human HBV strain with mutations conferring resistance to both lamivudine and adefovir. Hepatology. 2005;41(6):1391–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Villet S, Pichoud C, Billioud G, et al. Impact of hepatitis B virus rtA181V/T mutants on hepatitis B treatment failure. J Hepatol. 2008;48(5):747–55.PubMedCrossRefGoogle Scholar
  41. 41.
    Fung SK, Fontana RJ. Management of drug-resistant chronic hepatitis B. Clin Liver Dis. 2006;10(2):275–302.PubMedCrossRefGoogle Scholar
  42. 42.
    Trojan J, Stuermer M, Teuber G, et al. Treatment of patients with lamivudine-resistant and adefovir dipivoxil-resistant chronic hepatitis B virus infection: is tenofovir the answer? Gut. 2007;56(3):436–7.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Yatsuji H, Hiraga N, Mori N, et al. Successful treatment of an entecavir-resistant hepatitis B virus variant. J Med Virol. 2007;79(12):1811–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Lok AS. How to diagnose and treat hepatitis B virus antiviral drug resistance in the liver transplant setting. Liver Transpl. 2008;14(Suppl 2):S8–S14.PubMedCrossRefGoogle Scholar
  45. 45.
    Yuen MF, Fung J, Wong DK, et al. Prevention and management of drug resistance for antihepatitis B treatment. Lancet Infect Dis. 2009;9(4):256–64.PubMedCrossRefGoogle Scholar
  46. 46.
    Altinbas A, Aktas B, Basar O, et al. Is there an association between the measurement of qualitative HBsAg and virologic response in chronic HBV infection. Ann Hepatol. 2012;11(3):320–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Chan HL, Wong VW, Tse AM, et al. Serum hepatitis B surface antigen quantitation can reflect hepatitis B virus in the liver and predict treatment response. Clin Gastroenterol Hepatol. 2007;5(12):1462–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Bowden S. Serological and molecular diagnosis. Semin Liver Dis. 2006;26(2):97–103.PubMedCrossRefGoogle Scholar
  49. 49.
    Ayub A, Ashfaq UA, Haque A. HBV induced HCC: major risk factors from genetic to molecular level. Biomed Res Int. 2013;2013:810461.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Dandri M, Locarnini S. New insight in the pathobiology of hepatitis B virus infection. Gut. 2012;61(Suppl 1):i6–17.CrossRefPubMedGoogle Scholar
  51. 51.
    Rodriguez-Frias F, Buti M, Tabernero D, Homs M. Quasispecies structure, cornerstone of hepatitis B virus infection: mass sequencing approach. World J Gastroenterol. 2013;19(41):6995–7023.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Liu F, Yu DM, Huang SY, Yu JL, Zhang DH, Gong QM, Zhang XX. Clinical implications of evolutionary patterns of homologous, full-length hepatitis B virus quasispecies in different hosts after perinatal infection. J Clin Microbiol. 2014;52(5):1556–65.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Bartholomeusz A, Locarnini S. Hepatitis B virus mutations associated with antiviral therapy. J Med Virol. 2006;78(Suppl 1):S52–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Mathet VL, Feld M, Espínola L, Sánchez DO, Ruiz V, Mandó O, Carballal G, Quarleri JF, D’Mello F, Howard CR, Oubiña JR. Hepatitis B virus S gene mutants in a patient with chronic active hepatitis with circulating anti-HBs antibodies. J Med Virol. 2003;69(1):18–26.PubMedCrossRefGoogle Scholar
  55. 55.
    Li W, Ikematsu H, Yamaji TK, et al. Hepatitis B virus genomes of chronic hepatitis patients do not contain specific mutations related to acute exacerbation. Dig Dis Sci. 2001;46(10):2104–12.PubMedCrossRefGoogle Scholar
  56. 56.
    Locarnini S. Molecular virology and the development of resistant mutants: implications for therapy. Semin Liver Dis. 2005;25(Suppl 1):9–19.PubMedCrossRefGoogle Scholar
  57. 57.
    Liu F, Chen L, Yu DM, et al. Evolutionary patterns of hepatitis B virus quasispecies under different selective pressures: correlation with antiviral efficacy. Gut. 2011;60(9):1269–77.PubMedCrossRefGoogle Scholar
  58. 58.
    Pallier C, Rodriguez C, Brillet R, et al. Complex dynamics of hepatitis B virus resistance to adefovir. Hepatology. 2009;49(1):50–9.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Moriconi F, Colombatto P, Coco B, et al. Emergence of hepatitis B virus quasispecies with lower susceptibility to nucleos(t)ide analogues during lamivudine treatment. J Antimicrob Chemother. 2007;60(2):341–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Oto M, Miyake S, Yuasa Y. Optimization of Nonradioisotopic single Strand conformation polymorphism analysis with a conventional Minislab gel electrophoresis apparatus. Anal Biochem. 1993;213(1):19–22.PubMedCrossRefGoogle Scholar
  61. 61.
    Kubo KS, Stuart RM, Freitas-Astúa J, Antonioli-Luizon R, Locali-Fabris EC, Coletta-Filho HD, Machado MA, Kitajima EW. Evaluation of the genetic variability of orchid fleck virus by single-strand conformational polymorphism analysis and nucleotide sequencing of a fragment from the nucleocapsid gene. Arch Virol. 2009;154(6):1009–14.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Liu J, Huang S, Sun M, Liu S, Liu Y, Wang W, Zhang X, Wang H, Hua W. An improved allele-specific PCR primer design method for SNP marker analysis and its application. Plant Methods. 2012;8:34.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ririe KM, Rasmussen RP, Wittwer CT. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem. 1997;245(2):154–60.PubMedCrossRefGoogle Scholar
  64. 64.
    Magalhães JP, Finch CE, Janssens G. Next-generation sequencing in aging research: emerging applications, problems, pitfalls and possible solution. Ageing Res Rev. 2010;9(3):315–23.PubMedCrossRefGoogle Scholar
  65. 65.
    Mardis ER. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:387–402.PubMedCrossRefGoogle Scholar
  66. 66.
    Barzon L, Lavezzo E, Militello V, et al. Applications of next-generation sequencing technologies to diagnostic virology. Int J Mol Sci. 2011;12(11):7861–84.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lagerqvist J, Zwolak M, Di Ventra M. Fast DNA sequencing via transverse electronic transport. Nano Lett. 2006;6(4):779–82.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Stoddart D, Heron AJ, Mikhailova E, Maglia G, Bayley H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc Natl Acad Sci U S A. 2009;106(19):7702–7.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Postma HW. Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett. 2010;10(2):420–5.PubMedCrossRefGoogle Scholar
  70. 70.
    Fologea D, Gershow M, Ledden B, et al. Detecting single stranded DNA with a solid state nanopore. Nano Lett. 2005;5(10):1905–9.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Cai CJ, Lu MQ, editors. Peri-operative therapies of patients receiving liver transplantation due to severe hepatitis. Guangzhou, China: Sun Yat-sen University Press; 2008. ISBN: 9787306031860Google Scholar
  72. 72.
    Liu TH, Zhu JY, Zhang SQ, et al. Establishment of a scoring system for evaluating the severity of hepatitis B patients with acute-on-chronic liver failure. Chin J Infect Dis. 2010;28(5):293–6.Google Scholar

Copyright information

© Springer Nature B.V. and Huazhong University of Science and Technology Press 2019

Authors and Affiliations

  • Liang Peng
    • 1
  • Zhi-Liang Gao
    • 1
  • Yu-Ming Wang
    • 2
  • Deng-Ming He
    • 2
  • Jing-Ming Zhao
    • 3
  • Xue-Fan Bai
    • 4
  • Xiao-Jing Wang
    • 5
  1. 1.The Third Affiliated HospitalSun Yat-Sen UniversityGuangzhouChina
  2. 2.Southwest HospitalThe First Hospital Affiliated To AMUChongqingChina
  3. 3.Beijing 302 HospitalBeijingChina
  4. 4.Tangdu HospitalThe Fourth Military Medical UniversityShanxiChina
  5. 5.Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations