Polymer Nanocomposites with Silver Nanoparticles Formed by Low-Energy Ion Implantation: Slow Positron Beam Spectroscopy Studies

  • T. S. Kavetskyy
  • M. O. Liedke
  • N. Srinivasan
  • A. Wagner
  • R. Krause-Rehberg
  • O. Šauša
  • T. Petkova
  • V. Boev
  • A. L. Stepanov
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


Polymer nanocomposites formed by low-energy ion implantation were studied by means of positron annihilation spectroscopy with a variable-energy positron beam or slow positron beam spectroscopy. Silver ion implantation into polymethylmethacrylate (Ag:PMMA) and hybrid organic-inorganic ureasil (Ag:ureasil) was performed at different ion fluences with a constant energy of 30 keV and a current density of 1 μA/cm2 in order to prepare Ag nanoparticles in the near-surface region of polymer matrix. Contribution of Doppler broadening slow positron beam spectroscopy technique for understanding Ag nanoparticles formation in Ag:PMMA and Ag:ureasil nanocomposite films is demonstrated.


Polymers Nanocomposites PMMA Ureasil Ion implantation Silver nanoparticles Positron annihilation Slow positrons 



This work was financially supported in part by the Ministry of Education and Science of Ukraine (projects #0116U004737 and #0117U007143; to TK), by the Slovak Grant Agency VEGA (project #2/0157/17; to OŠ), and Slovak Research and Development Agency (project #APVV-16-0369; to OŠ), by the National Science Fund of the Bulgarian Ministry of Education (project #FNI-DN09/12-2016; to TK, TP and VB) and by the Russian Foundation for Basic Research (project #15-48-02525; to ALS).


  1. 1.
    Stepanov AL (2010) Synthesis of silver nanoparticles in dielectric matrix by ion implantation: a review. Rev Adv Mater Sci 26:1Google Scholar
  2. 2.
    Wang J et al (2012) Photoluminescence and reflectivity of polymethylmethacrylate implanted by low-energy carbon ions at high fluences. Appl Surf Sci 261:653CrossRefADSGoogle Scholar
  3. 3.
    Gupta R et al (2012) Optical characterization of poly(methyl methacrylate) implanted with low energy ions. Appl Surf Sci 263:334CrossRefADSGoogle Scholar
  4. 4.
    Stepanov AL (2004) Optical properties of metal nanoparticles synthesized in a polymer by ion implantation: a review. Tech Phys 49:143CrossRefGoogle Scholar
  5. 5.
    Galyautdinov MF et al (2016) Formation of a periodic diffractive structure based on poly(methyl methacrylate) with ion-implanted silver nanoparticles. Tech Phys Lett 42:182CrossRefADSGoogle Scholar
  6. 6.
    Lee EH et al (1992) Improved hardness and wear properties of B-ion implanted polycarbonate. J Mater Res 7:1900CrossRefADSGoogle Scholar
  7. 7.
    Lee EH et al (1993) Ion beam application for improved polymer surface properties. Nucl Instrum Meth Phys Res B 74:326CrossRefADSGoogle Scholar
  8. 8.
    Klepikov V, Kruchinin S, Novikov V, Sothikov A (2006) Composite materials with radioactive inclusions as artificial radiation covering. Rev Adv Mater Sci 12:127Google Scholar
  9. 9.
    Kruchinin S, Novikov V, Klepikov V (2008) Nonlinear current oscillations in a Josephson junction with fractal radioisotope composites. Metrol Meas Syst 15:281Google Scholar
  10. 10.
    Ermakov V, Kruchinin S, Fujiwara A (2008) In: Bonca J, Kruchinin S (eds) Proceeding of NATO ARW “Electron Transport in Nanosystems”. Springer, pp 341–349Google Scholar
  11. 11.
    Boldyryeva H et al (2004) Surface modification and nanoparticle formation by negative ion implantation of polymers. Nucl Instr Meth Phys Res B 219–220:953CrossRefADSGoogle Scholar
  12. 12.
    Boldyryeva H et al (2005) High-fluence implantation of negative metal ions into polymers for surface modification and nanoparticle formation. Surf Coat Technol 196:373CrossRefGoogle Scholar
  13. 13.
    Kavetskyy T S et al (2014) Structural defects and positronium formation in 40 keV B+-implanted polymethylmethacrylate. J Phys Chem B 118:4194CrossRefGoogle Scholar
  14. 14.
    Kavetskyy TS, Stepanov AL (2016) Ion-irradiation-induced carbon nanostructures in optoelectronic polymer materials. In: Monteiro WA (ed) Radiation effects in materials. InTech, Rijeka, pp 287–308Google Scholar
  15. 15.
    Kavetskyy T et al (2017) High-dose boron and silver ion implantation into PMMA probed by slow positrons: effects of carbonization and formation of metal nanoparticles. J Phys Conf Ser 791:012028CrossRefGoogle Scholar
  16. 16.
    Panzarasa G et al (2016) Positron annihilation spectroscopy: a new frontier for understanding nanoparticle-loaded polymer brushes. Nanotechnology 27:02LT03Google Scholar
  17. 17.
    Panzarasa G et al (2017) Probing the impact of the initiator layer on grafted-from polymer brushes: a positron annihilation spectroscopy study. Macromolecules 50:5574CrossRefADSGoogle Scholar
  18. 18.
    Stepanov AL et al (2000) Formation of metal-polymer composites by ion implantation. Phil Mag B 80:23CrossRefADSGoogle Scholar
  19. 19.
    Stepanov AL et al (2015) Synthesis of porous silicon by ion implantation. Rev Adv Mater Sci 40:155Google Scholar
  20. 20.
    Kavetskyy T et al (2011) Nanovoids in glasses and polymers probed by positron annihilation lifetime spectroscopy. In: Riethmaier JP et al (eds) Nanotechnological basis for advanced sensors. Springer, Berlin, pp 103–110CrossRefGoogle Scholar
  21. 21.
    Kavetskyy T et al (2012) New organic-inorganic hybrid ureasil-based polymer and glass-polymer composites with ion-implanted silver nanoparticles. Phys Status Solidi C 9:2444CrossRefADSGoogle Scholar
  22. 22.
    Kavetskyy T et al (2013) New organic-inorganic hybrid ureasil-based polymer materials studied by PALS and SEM techniques. Mater Sci Forum 733:171CrossRefGoogle Scholar
  23. 23.
    Anwand W et al (1995) A magnetically guided slow positron beam for defect studies. Acta Phys Pol A 88:7CrossRefGoogle Scholar
  24. 24.
    Anwand W et al (2012) Design and construction of a slow positron beam for solid and surface investigations. Defect Diffus Forum 331:25CrossRefGoogle Scholar
  25. 25.
    Makhov AF (1961) The penetration of electrons into solids. II. The distribution of electrons in depth. Sov Phys Solid State 2:1942Google Scholar
  26. 26.
    Vehanen A et al (1987) Profiling multilayer structures with monoenergetic positrons. Phys Rev B 35:4606CrossRefADSGoogle Scholar
  27. 27.
    Kobayashi Y et al (2008) Application of positron beams to the study of positronium-forming solids. Appl Surf Sci 255:174CrossRefADSGoogle Scholar
  28. 28.
    Kavetskyy T et al (2017) Acta Phys Pol A Network properties of ureasil-based polymer matrixes for construction of amperometric biosensors as probed by PALS and swelling experiments. 132:1515Google Scholar
  29. 29.
    Saito F et al (2004) Study of ion irradiated poly-lactic acid using slow positron beam. Mater Sci Forum 445–446:340CrossRefGoogle Scholar
  30. 30.
    Saito F et al (2014) Characterization of ion-irradiated poly-L-lactic acid using nano-cutting. Phys Chem Chem Phys 16:26991CrossRefGoogle Scholar
  31. 31.
    Kavetskyy TS et al (2018) Surface plasmon resonance band of ion-synthesized Ag nanoparticles in high dose Ag: PMMA nanocomposite films. In: Petkov P et al (eds) Advanced nanotechnologies for detection and defence against CBRN agents, Springer, Dordrecht. Google Scholar
  32. 32.
    Hanemann T, Szabo DV (2010) Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3:3468CrossRefADSGoogle Scholar
  33. 33.
    Wie S et al (2011) Multifunctional composite core-shell nanoparticles. Nanoscale 3:4474CrossRefADSGoogle Scholar
  34. 34.
    Kumar KS et al (2013) Recent advancement in functional core-shell nanoparticles of polymers: synthesis, physical properties, and applications in medical biotechnology. J Nanoparticles 2013:672059CrossRefGoogle Scholar
  35. 35.
    Gillet JN, Meunier M (2005) General equation for size nanocharacterization of the core-shell nanoparticles by X-ray photoelectron spectroscopy. J Phys Chem B 109:8733CrossRefGoogle Scholar
  36. 36.
    Puska MJ, Lanki P, Nieminen RM (1989) Positron affinities for elemental metals. J Phys Condens Matter 1:6081CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • T. S. Kavetskyy
    • 1
    • 2
  • M. O. Liedke
    • 3
  • N. Srinivasan
    • 3
  • A. Wagner
    • 3
  • R. Krause-Rehberg
    • 4
  • O. Šauša
    • 5
  • T. Petkova
    • 6
  • V. Boev
    • 6
  • A. L. Stepanov
    • 7
    • 8
  1. 1.Drohobych Ivan Franko State Pedagogical UniversityDrohobychUkraine
  2. 2.The John Paul II Catholic University of LublinLublinPoland
  3. 3.Institute of Radiation PhysicsHelmholtz-Zentrum Dresden-RossendorfDresdenGermany
  4. 4.Department of PhysicsUniversity HalleHalleGermany
  5. 5.Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia
  6. 6.Institute of Electrochemistry and Energy SystemsBulgarian Academy of SciencesSofiaBulgaria
  7. 7.Kazan Physical-Technical InstituteRussian Academy of SciencesKazanRussia
  8. 8.Kazan Federal UniversityKazanRussia

Personalised recommendations