Optical Polarization Characteristics of Zeolite Deposited on Different Substrates for Perspective Modulation Biosensor Systems

  • S. P. Rudenko
  • M. O. Stetsenko
  • L. S. Maksimenko
  • S. B. Kryvyi
  • B. K. Serdega
  • A. S. Fiorillo
  • S. A. Pullano
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


This work reports the investigation of Zeolite 3A layers obtained by spin coating process at low temperature for registration alcohol vapor. Phase composition of Zeolite 3A layers was studied with the help of X-ray diffraction (XRD). Optical polarization properties and sensorics application of Zeolite 3A layers deposited onto different substrates were investigated by modulation polarimetry. Optical polarization properties were observed by measuring of angular characteristics of V-component of Stokes Vector. The influence of substrate materials for Zeolite 3A on amplitude parameter of angular characteristics of V-component of Stokes Vector was studied. The dielectric and conductor materials as Glass slide, Indium Tin Oxide nanofilm and Gold nanofilm were used. The highest amplitude value of V-component of Stokes Vector corresponds to the Zeolite layer on gold nanofilm. The response to ethanol vapor was registered for the Zeolite layer on gold nanofilm.


Zeolite Modulation polarimetry V-component of Stokes vector Sensor application 


  1. 1.
    Cejka J, Corma A, Zones S (2010) Zeolites and catalysis: synthesis, reactions and applications. Wiley-VCH, New YorkGoogle Scholar
  2. 2.
    Zaarour M, Dong B, Naydenova I, Retoux R, Mintova S (2014) Progress in zeolite synthesis promotes advanced applications. Microporous Mesoporous Mater 189:11–21Google Scholar
  3. 3.
    Ismail AA, Mohamed RM, Ibrahim IA, Kini G, Koopman B (2010) Synthesis, optimization and characterization of zeolite A and its ion-exchange properties. Colloids Surf A 366:80–87Google Scholar
  4. 4.
    Valtchev V, Mintova S, Konstantinov L (1995) Influence of metal substrate properties on the kinetics of zeolite film formation. Zeolites 15:679–683Google Scholar
  5. 5.
    Geus E, Mulder A, Vischjager D, Schoonman J, van Bekkum H (1991) Synthesis of a ceramic zeolite membrane by means of a dip-coating technique. Key Eng Mater 61–62:461–464Google Scholar
  6. 6.
    Geus E, van Bekkum H, Bakker W, Moulijn J (1993) High-temperature stainless steel supported zeolite (MFI) membranes: preparation, module construction, and permeation experiments. Microporous Mater 1(2):131–147Google Scholar
  7. 7.
    Mintova S, Edlund J, Schoeman B, Valtchev V, Sterte J (1997) Continuous films of zeolite ZSM-5 on modified gold surfaces. Chem Commun (1):15–16.
  8. 8.
    Balkus KJ Jr, Scott AS (1999) Zeolite coatings on three-dimensional objects via laser ablation. Chem Mater 11(2):189–191Google Scholar
  9. 9.
    Fiorillo AS, Pullano SA, Tiriolo R, Vinko JD (2016) Iono-electronic interface based on innovative low temperature zeolite coated NMOS (circuits) for bio-nanosensor manufacture, nanomaterials for security. NATO Sci Peace Secur Ser A Chem Biol 201–214.
  10. 10.
    Erdem E, Karapinar N, Dona R (2004) The removal of heavy metal cations by natural zeolites. J Colloid Interface Sci 280(2):309–314Google Scholar
  11. 11.
    Rondón W, Freire D, de Benzo Z, Sifontes AB, González Y, Valero M, Brito JL (2013) Application of 3A zeolite prepared from venezuelan kaolin for removal of Pb (II) from wastewater and its determination by flame atomic absorption spectrometry. Am J Anal Chem 4:584–593Google Scholar
  12. 12.
    Melo CR, Riella HG, Kuhnen NC, Angioletto E, Melo AR, Bernardin ALM, da Rocha MR, da Silva L (2012) Synthesis of 4A zeolites from kaolin for obtaining 5A zeolites through ionic exchange for adsorption of arsenic. Mater Sci Eng B 177(4):345–349Google Scholar
  13. 13.
    Loiola AR, Andrade JCRA, Sasak JM, da Silva LRD (2012) Structural analysis of zeolite NaA synthesized by a cost-effective hydrothermal method using kaolin and its use as water softener. J Colloid Interface Sci 367(1):34–39Google Scholar
  14. 14.
    Kucherenko I, Soldatkin O, Kasap BO, Kirdeciler SK, Kurc BA, Jaffrezic-Renault N, Soldatkin A, Lagarde F, Dzyadevych S (2015) Nanosized zeolites as a perspective material for conductometric biosensors creation. Nanoscale Res Lett 10(209):1–9Google Scholar
  15. 15.
    Vilaseca M, Coronas J, Cirera A, Cornet A, Morante JR, Santamarıa J (2003) Use of zeolite films to improve the selectivity of reactive gas sensors. Catal Today 82:179–185Google Scholar
  16. 16.
    Lopez-Bastidas C, Smolentseva E, Petranovskii V, Machorro R (2013) Plasmon features of coinage metal nanoparticles supported on zeolites. Plasmonics 8(4):1551–1558Google Scholar
  17. 17.
    Bottoni U, Tiriolo R, Pullano SA, Dastoli S, Amoruso GF, Nisticò SP, Fiorillo AS (2016) Infrared saliva analysis of psoriatic and diabetic patients: similarities in protein components. IEEE Trans Biomed Eng 63(2):379–384Google Scholar
  18. 18.
    Xu X, Wang J, Long Y (2006) Review, Zeolite-based materials for gas sensors. Sensors 6:1751–1764Google Scholar
  19. 19.
    Zheng Y, Li X, Dutta PK (2012) Review, exploitation of unique properties of zeolites in the development of gas sensors. Sensors 12(4):5170–5194Google Scholar
  20. 20.
    Stetsenko MO, Maksimenko LS, Rudenko SP et al (2016) Surface plasmon’s dispersion properties of porous gold films. Nanoscale Res Lett 11(1):116Google Scholar
  21. 21.
    Stetsenko MO, Rudenko SP, Maksimenko LS, Serdega BK, Pluñhery O, Snegir SV (2017) Solid-state synthesis and optical properties of gold nanoparticle assemblies on a glass surface. Nanoscale Res Lett 12:348Google Scholar
  22. 22.
    Stetsenko MÎ, Voznyi AA, Kosyak VV, Rudenko SP, Maksimenko LS, Serdega BK, Opanasuk AS (2016) Plasmonic effects in tin disulfide nanostructured thin films obtained by the close-spaced vacuum sublimation. Plasmonics 12:1213–1220Google Scholar
  23. 23.
    Rudenko SP, Maksimenko LS, Matyash IE, Mischuk OM (2016) Diagnostic of surface plasmons resonances in nanosized gold films by modulation polarization spectroscopy. Plasmonics 11(2):557–563Google Scholar
  24. 24.
    Ermakov V, Kruchinin S, Fujiwara A (2008) Electronic nanosensors based on nanotransistor with bistability behaviour. In: Bonca J, Kruchinin S (eds) Proceeding of NATO ARW “Electron transport in nanosystems”. Springer, pp 341–349Google Scholar
  25. 25.
    Rodionov VE, Shnidko IN, Zolotovsky A, Kruchinin SP (2013) Electroluminescence of Y2O3:Eu and Y2O3:Sm films. Mater Sci 31:232–239Google Scholar
  26. 26.
    Ermakov V, Kruchinin S, Hori H, Fujiwara A (2007) Phenomena of strong electron correlastion in the resonant tunneling. Int J Mod Phys B 11:827–835Google Scholar
  27. 27.
    Fiorillo AS, Rudenko SP, Stetsenko MO et al (2016) Optical polarization properties of zeolite thin films: aspects for medical applications. In: IEEE international symposium on medical measurements and applications, Benevento, pp 332–335.
  28. 28.
    Fiorillo AS, Tiriolo R, Pullano SA (2015) Absorption of urea into zeolite layer integrated with microelectronic circuits. IEEE Trans Nanotechnol 14(2):214–217Google Scholar
  29. 29.
    Fiorillo AS (2012) Deposition of zeolite thin layers onto silicon wafers for biomedical use. IEEE Trans Nanotechnol 11(4):654–656Google Scholar
  30. 30.
    Stetsenko MO, Matyash IE, Rudenko SP, Minailova IA, Maksimenko LS, Serdega BK (2017) New type of plasmonic biosensors based on modulation polarimetry technique. In: IEEE international young scientists forum on applied physics and engineering, Lviv, pp 100–103Google Scholar
  31. 31.
    Jasperson SN, Schnatterly SE (1969) An improved method for high reflectivity ellipsometry based on a new polarization modulation technique. Rev Sci Instrum 40(6):761CrossRefADSGoogle Scholar
  32. 32.
    Born M, Wolf E (1999) Principles of optics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  33. 33.
    Gerrard A, Burch JM (1975) Introduction to matrix methods in optics. Wiley, LondonzbMATHGoogle Scholar
  34. 34.
    Azzam RMA, Bashara NMI (1989) Ellipsometry and polarized light. North Holland, New YorkGoogle Scholar
  35. 35.
    PDF-ICDD. Power Diffraction File (Set-1-S1) International Centre for Diffraction DataGoogle Scholar
  36. 36.
    Maier SA (2007) Plasmonics: fundamental and application. Springer, New YorkCrossRefGoogle Scholar
  37. 37.
    Serdega BK, Rudenko SP, Maksimenko LS, Matyash IE (2011) Plasmonic optical properties and the polarization modulation technique. In: Mishchenko MI, Yatskiv YaS, Rosenbush VK, Videen G (eds) Polarimetric detection, characterization and remote sensing. Springer, Dordrecht, pp 473–500CrossRefGoogle Scholar
  38. 38.
    Maksimenko LS, Matyash IE, Minailova IA, Mishchuk ON, Rudenko SP, Serdega BK (2010) Polarization stokes polarimetry of the amplitude and phase characteristics of surface plasmon polariton resonance. Opt Spectrosc 109(5):808–813CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • S. P. Rudenko
    • 1
  • M. O. Stetsenko
    • 1
  • L. S. Maksimenko
    • 1
  • S. B. Kryvyi
    • 1
  • B. K. Serdega
    • 1
  • A. S. Fiorillo
    • 2
  • S. A. Pullano
    • 2
  1. 1.V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of UkraineKyivUkraine
  2. 2.Department of Health SciencesUniversity Magna GræciaCatanzaroItaly

Personalised recommendations