Advertisement

Zeolite-Based Interfaces for CB Sensors

  • A. S. Fiorillo
  • J. D. Vinko
  • F. Accattato
  • M. G. Bianco
  • C. D. Critello
  • S. A. Pullano
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

Nano-porous synthetic zeolite can be used to interface bio-systems to microelectronic circuits, which are integrated onto Si wafers. Similar micro-devices have the potentiality not only of acquiring and processing biochemical signals in situ, but also of measuring physico-chemical parameters involved in matter conversion, joining with full rights the emerging technology of “laboratory-on-a-chip”. Wearable, miniaturized devices capable of fast responses which are also small in size, lightweight and low power consuming have rendered them helpful detecting-to-warn support in case of CBRN threats. Thin layers of Zeolite were deposited on both glass and silicon wafers using a technique fully compatible with standard integrated circuit manufacture. The experimental results of various tests carried out in order to confirm their trapping capabilities of the toxic agents acetone, chlorine, and methanol are reported in this article.

Keywords

Nanoporous materials Zeolite Sensors Toxic agents Wearable devices Embedded systems 

References

  1. 1.
    Ghallab YH, El-Hamid HA, Ismail Y (2015) Lab on a chip based on CMOS technology: system architectures, microfluidic packaging, and challenges. IEEE Des Test 32(6):20–31Google Scholar
  2. 2.
    Li H, Liu X, Li L, Genov R, Mason AJ (2017) CMOS electrochemical instrumentation for biosensor microsystems: a review. Sensors (Basel) 17(1):74Google Scholar
  3. 3.
    Fiorillo AS, Pullano SA, Tiriolo R, Vinko JD (2016) Iono-electronic interface based on innovative low temperature zeolite coated NMOS (Circuits) for bio-nanosensor manufacture. In: Bonča J, Kruchinin S (eds) Nanomaterials for security. NATO science for peace and security series A: chemistry and biology. Springer, DordrechtGoogle Scholar
  4. 4.
    Barrer RM (1982) Hydrothermal chemistry of zeolites. Academic, London, pp 152Google Scholar
  5. 5.
    Breck DW (1984) Zeolite molecular sieve. Malabar, KriegerGoogle Scholar
  6. 6.
    Rhodes CJ (2010) Properties and applications of zeolites. Sci Prog 93:223–284Google Scholar
  7. 7.
    Universal Oil Products (2010) An introduction to zeolite molecular sieves. UOP, Des Plaines. www.eltrex.pl/pdf/karty/adsorbenty/ENG-Introduction%20to%20Zeolite%20Molecular%20Sieves.pdf
  8. 8.
    Larin AV (2013) The Loewenstein rule: the increase in electron kinetic energy as the reason for instability of Al–O–Al linkage in aluminosilicate zeolites. Phys Chem Miner 40(10):771–780CrossRefADSGoogle Scholar
  9. 9.
    Kim SA, Kamala-Kannan S, Lee KJ, Park YJ, Shea PJ, Lee WH, Kim HM, Oh BT (2013) Removal of Pb(II) from aqueous solution by a zeolite-nanoscale zero-valent iron composite. Chem Eng J 217:54–60CrossRefGoogle Scholar
  10. 10.
    Fiorillo AS (2009) Deposition of layers of porous materials, layers thus obtained and devices containing them, EP2132768 A2, 16 Dec 2009Google Scholar
  11. 11.
    Fiorillo AS (2012) Deposition of zeolite thin layers onto silicon wafers for biomedical use. IEEE Trans Nanotechnol 11:654–656CrossRefADSGoogle Scholar
  12. 12.
    El Roz M, Lakiss L, Valtchev V, Mintova S, Thibault-Starzyk F (2012) Cold plasma as envi- ronmentally benign approach for activation of zeolite nanocrystals. Microporous Mesoporous Mater 158:148–154CrossRefGoogle Scholar
  13. 13.
    Wang Z, Mitra A, Wang H, Huang L, Yan Y (2001) Pure silica zeolite films as low-k dielectrics by spin-on of nanoparticle suspension. Adv Mater 13:1463–1466CrossRefGoogle Scholar
  14. 14.
    Bockisch M (1998) Fats and oils handbook. AOCS Press, ChampaignGoogle Scholar
  15. 15.
    Bottoni U, Tiriolo R, Pullano SA, Dastoli S, Amoruso GF, Nistico SP, Fiorillo AS (2016) Infrared saliva analysis of psoriatic and diabetic patients: similarities in protein components. IEEE Trans Biom Eng 63(2):379–384CrossRefGoogle Scholar
  16. 16.
    Fiorillo AS, Tiriolo R, Pullano SA (2015) Absorption of urea into zeolite layer integrated with microelectronic circuits. IEEE Trans Nanotechnol 14(2):214–217CrossRefADSGoogle Scholar
  17. 17.
    Larrubia MA, Ramis G, Busca G (2000) An FT-IR study of the absorption of urea and ammonia over V2O5-MoO3-TiO2 SCR catalysts. Appl Catal B Environ 27:145–151CrossRefGoogle Scholar
  18. 18.
    Rodionov VE, Shnidko IN, Zolotovsky A, Kruchinin SP (2013) Electroluminescence of Y2O3:Eu and Y2O3:Sm films. Mater Sci 31:232–239Google Scholar
  19. 19.
    Ermakov V, Kruchinin S, Fujiwara A (2008) Electronic nanosensors based on nanotransistor with bistability behaviour. In: Bonca J, Kruchinin S (eds) Proceedings of the NATO ARW “Electron transport in nanosystems”. Springer, pp 341–349Google Scholar
  20. 20.
    Vilaca N, Amorim R, Machado AF, Parpot P, Pereira MF, Sardo M, Rocha J, Fonseca AM, Neves IC, Baltazar F (2013) Potentiation of 5-fluorouracil encapsulated in zeolites as drug delivery systems for in vitro models of colorectal carcinoma. Colloids Surf B Biointerfaces 112:237–244CrossRefGoogle Scholar
  21. 21.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297CrossRefGoogle Scholar
  22. 22.
    Creemers EE, Tijsen AJ, Pinto YM (2012) Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res 110(3):483–495CrossRefGoogle Scholar
  23. 23.
    Pescador N, Pérez-Barba M, Ibarra JM, Corbaón A, Martínez-Larrad MT, Serrano-Ríos M (2013) Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers. PLoS One 8(10):e77251CrossRefADSGoogle Scholar
  24. 24.
    Guay C, Regazzi R (2013) Circulating micro RNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol 9(9):513–521CrossRefGoogle Scholar
  25. 25.
    Hashizume H, Theng BKG (2007) Adenine, adenosine, ribose and 5-amp adsorption to allophane. Clay Clay Miner 55(6):599–605CrossRefADSGoogle Scholar
  26. 26.
    Benetoli LOB, Santana H, Zaia CTBV, Zaia DAM (2008) Adsorption of nucleic acid bases on clays: an investigation using Langmuir and Freundlich isotherms and FT-IR spectroscopy. Monatshefte für Chemie 139(7):753–761CrossRefGoogle Scholar
  27. 27.
    Negron-Mendoza A, Ramos-Bernal S, Gamboa de Buen I (2010) A thermoluminescence study of bio-organic compounds adsorbed in a clay mineral. IEEE Trans Nucl Sci 57(3):1223–1227CrossRefADSGoogle Scholar
  28. 28.
    Cleaves II HJ, Jonsson CM, Jonsson CL, Sverjensky DA, Hazen RM (2010) Adsorption of nucleic acid components on rutile (TiO2) surfaces. Astrobiology 10(3):311–323CrossRefADSGoogle Scholar
  29. 29.
    Baú JPT, Carneiro CEA, de Souza IG Jr, de Souza CMD, da Costa ACS, di Mauro E, Zaia CTBV, Coronas J, Casado C, de Santana H, Zaia DAM (2012) Adsorption of adenine and thymine on zeolites: FT-IR and EPR spectroscopy and X-ray diffractometry and SEM studies. Orig Life Evol Biosph 42(1):19–29Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • A. S. Fiorillo
    • 1
  • J. D. Vinko
    • 2
  • F. Accattato
    • 1
  • M. G. Bianco
    • 1
  • C. D. Critello
    • 1
  • S. A. Pullano
    • 1
  1. 1.Laboratory of Biomedical Applications, Technologies and Sensors – BATS, Department of Health SciencesUniversity Magna Græcia of CatanzaroCatanzaroItaly
  2. 2.ERA PhysicsVelletriItaly

Personalised recommendations