Strained Graphene Structures: From Valleytronics to Pressure Sensing

  • S. P. Milovanović
  • F. M. Peeters
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


Due to its strong bonds graphene can stretch up to 25% of its original size without breaking. Furthermore, mechanical deformations lead to the generation of pseudo-magnetic fields (PMF) that can exceed 300 T. The generated PMF has opposite direction for electrons originating from different valleys. We show that valley-polarized currents can be generated by local straining of multi-terminal graphene devices. The pseudo-magnetic field created by a Gaussian-like deformation allows electrons from only one valley to transmit and a current of electrons from a single valley is generated at the opposite side of the locally strained region. Furthermore, applying a pressure difference between the two sides of a graphene membrane causes it to bend/bulge resulting in a resistance change. We find that the resistance changes linearly with pressure for bubbles of small radius while the response becomes non-linear for bubbles that stretch almost to the edges of the sample. This is explained as due to the strong interference of propagating electronic modes inside the bubble. Our calculations show that high gauge factors can be obtained in this way which makes graphene a good candidate for pressure sensing.


Graphene Pseudo-magnetic fields Valleytronics 



This work was supported by the Flemish Science Foundation (FWO-Vl).


  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films Science 306:666Google Scholar
  2. 2.
    Mermin ND, Wagner H (1966) Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models Phys Rev Lett 17:1133Google Scholar
  3. 3.
    Milovanovic SP (2017) Electronic transport properties in nano- and micro-engineered graphene structures (University of Antwerp), web:
  4. 4.
    Takagi M (1954) Electron-Diffraction Study of Liquid-Solid Transition of Thin Metal Films J Phys Soc Jpn 9:359Google Scholar
  5. 5.
    Venables JA, Spiller GDT, Hanbücken M (1984) Nucleation and growth of thin films Rep Prog Phys 47:399CrossRefGoogle Scholar
  6. 6.
    Gibney E (2015) The super materials that could trump graphene Nature 522:274Google Scholar
  7. 7.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene Science 321:385Google Scholar
  8. 8.
    Liu F, Ming P, Li J (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension Phys Rev B 76:064120Google Scholar
  9. 9.
    Pereira VM, Castro Neto AH, Peres NMR (2009) Tight-binding approach to uniaxial strain in graphene Phys Rev B 80:045401Google Scholar
  10. 10.
    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene Rev Mod Phys 81:109CrossRefGoogle Scholar
  11. 11.
    Partoens B, Peeters FM (2006) From graphene to graphite: Electronic structure around the K point Phys Rev B 74:075404Google Scholar
  12. 12.
    Landau LD, Lifshitz EM (1986) Theory of elasticity – course of theoretical physics, Vol 7. Springer, BerlinGoogle Scholar
  13. 13.
    Pereira VM, Castro Neto AH (2009) Strain Engineering of Graphene’s Electronic Structure Phys Rev Lett 103:046801Google Scholar
  14. 14.
    Vozmediano M, Katsnelson M, Guinea F (2010) Gauge fields in graphene Phys Rep 496:109Google Scholar
  15. 15.
    Guinea F, Katsnelson MI, Geim AK (2009) Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering Nat Phys 6:30Google Scholar
  16. 16.
    Guinea F, Geim AK, Katsnelson MI, Novoselov KS (2010) Generating quantizing pseudomagnetic fields by bending graphene ribbons Phys Rev B 81:035408Google Scholar
  17. 17.
    Zhu S, Stroscio JA, Li T (2015) Programmable Extreme Pseudomagnetic Fields in Graphene by a Uniaxial Stretch Phys Rev Lett 115:245501Google Scholar
  18. 18.
    Levy N, Burke SA, Meaker KL, Panlasigui M, Zettl A, Guinea F, Castro Neto AH, Crommie MF (2010) Strain-Induced Pseudo–Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles Science 329:544Google Scholar
  19. 19.
    Koenig SP, Wang L, Pellegrino J, Bunch JS (2012) Selective Molecular Sieving through Porous Graphene Nat Nanotech 7:728Google Scholar
  20. 20.
    Milovanovic SP, Peeters FM (2016) Strained graphene Hall bar J Phys Condens Matter 29:075601CrossRefADSGoogle Scholar
  21. 21.
    Kim K-J, Blanter Ya M, Ahn K-H (2011) Interplay between real and pseudomagnetic field in graphene with strain Phys Rev B 84:081401(R)Google Scholar
  22. 22.
    de Juan F, Cortijo A, Vozmediano MAH, Cano A (2011) Aharonov-Bohm interferences from local deformations in graphene Nat Phys 7:810Google Scholar
  23. 23.
    Klimov NN, Jung S, Zhu S, Li T, Wright CA, Solares SD, Newell DB, Zhitenev NB, Stroscio JA (2012) Electromechanical Properties of Graphene Drumheads Science 336:1557Google Scholar
  24. 24.
    Masir MR, Moldovan D, Peeters FM (2013) Pseudo magnetic field in strained graphene: Revisited Solid State Commun 76:175–176Google Scholar
  25. 25.
    Settnes M, Power SR, Jauho A-P (2016) Pseudomagnetic fields and triaxial strain in graphene Phys Rev B 93:035456Google Scholar
  26. 26.
    Jones GW, Pereira VM (2014) Designing electronic properties of two-dimensional crystals through optimization of deformations New J Phys 16:093044Google Scholar
  27. 27.
    Jones GW, Bahamon DA, Castro Neto AH, Pereira VM (2017) Quantized Transport, Strain-Induced Perfectly Conducting Modes, and Valley Filtering on Shape-Optimized Graphene Corbino Devices Nano Lett 17:5304Google Scholar
  28. 28.
    Kane CL, Mele EJ (2005) Quantum Spin Hall Effect in Graphene Phys Rev Lett 95:226801Google Scholar
  29. 29.
    Tombros N, Jozsa C, Popinciuc M, Jonkman HT, van Wees BJ (2007) Electronic spin transport and spin precession in single graphene layers at room temperature Nature 448:571Google Scholar
  30. 30.
    Yang T-Y, Balakrishnan J, Volmer F, Avsar A, Jaiswal M, Samm J, Ali SR, Pachoud A, Zeng M, Popinciuc M, Güntherodt G, Beschoten B, Özyilmaz B (2011) Observation of Long Spin-Relaxation Times in Bilayer Graphene at Room Temperature Phys Rev Lett 107:047206Google Scholar
  31. 31.
    Dlubak B, Martin M-B, Deranlot C, Servet B, Xavier S, Mattana R, Sprinkle M, Berger C, De Heer WA, Petroff F, Anane A, Seneor P, Fert A (2012) Highly efficient spin transport in epitaxial graphene on SiC Nat Phys 8:557Google Scholar
  32. 32.
    Han W, Kawakami RK, Gmitra M, Fabian J (2014) Graphene spintronics Nat Nanotech 9:794CrossRefGoogle Scholar
  33. 33.
    Schmidt G, Ferrand D, Molenkamp LW, Filip AT, van Wees BJ (2000) Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor Phys Rev B 62:R4790(R)Google Scholar
  34. 34.
    Gunawan O, Habib B, De Poortere EP, Shayegan M (2006) Quantized conductance in an AlAs two-dimensional electron system quantum point contact Phys Rev B 74:155436Google Scholar
  35. 35.
    Rycerz A, Tworzydło J, Beenakker CWJ (2007) Valley filter and valley valve in graphene Nat Phys 3:172Google Scholar
  36. 36.
    Akhmerov AR, Bardarson JH, Rycerz A, Beenakker CWJ (2008) Theory of the valley-valve effect in graphene nanoribbons Phys Rev B 77:205416Google Scholar
  37. 37.
    Gunlycke D, White CT (2011) Graphene Valley Filter Using a Line Defect Phys Rev Lett 106:136806Google Scholar
  38. 38.
    Liu Y, Song J, Li Y, Liu Y, Sun Q (2013) Controllable valley polarization using graphene multiple topological line defects Phys Rev B 87:195445Google Scholar
  39. 39.
    Chen J-H, Autés G, Alem N, Gargiulo F, Gautam A, Linck M, Kisielowski C, Yazyev OV, Louie SG, Zettl A (2014) Controlled growth of a line defect in graphene and implications for gate-tunable valley filtering Phys Rev B 89:121407(R)Google Scholar
  40. 40.
    Nguyen VH, Dollfus P, Charlier J-C (2016) Valley Filtering and Electronic Optics Using Polycrystalline Graphene Phys Rev Lett 117:247702Google Scholar
  41. 41.
    Moldovan D, Ramezani Masir M, Covaci L, Peeters FM (2012) Resonant valley filtering of massive Dirac electrons Phys Rev B 86:115431Google Scholar
  42. 42.
    Ramezani Masir M, Matulis A, Peeters FM (2011) Scattering of Dirac electrons by circular mass barriers: Valley filter and resonant scattering Phys Rev B 84:245413Google Scholar
  43. 43.
    Wu Z, Zhai F, Peeters FM, Xu HQ, Chang K (2011) Valley-Dependent Brewster Angles and Goos-Hänchen Effect in Strained Graphene Phys Rev Lett 106:176802Google Scholar
  44. 44.
    Zhai F, Zhao X, Chang K, Xu HQ (2010) Magnetic barrier on strained graphene: A possible valley filter Phys Rev B 82:115442Google Scholar
  45. 45.
    Fujita T, Jalil MBA, Tan SG (2010) Valley filter in strain engineered graphene Appl Phys Lett 97:043508Google Scholar
  46. 46.
    Milovanovic SP, Peeters FM (2016) Strain controlled valley filtering in multi-terminal graphene structures Appl Phys Lett 109:203108Google Scholar
  47. 47.
    Settnes M, Power SR, Brandbyge M, Jauho A-P (2016) Graphene Nanobubbles as Valley Filters and Beam Splitters Phys Rev Lett 117:276801Google Scholar
  48. 48.
    Cavalcante LS, Chaves A, da Costa DR, Farias GA, Peeters FM (2016) All-strain based valley filter in graphene nanoribbons using snake states Phys Rev B 94:075432Google Scholar
  49. 49.
    Carrillo-Bastos R, Leon C, Faria D, Latgé A, Andrei EY, Sandler N (2016) Strained fold-assisted transport in graphene systems Phys Rev B 94:125422Google Scholar
  50. 50.
    Handschin C, Makk P, Rickhaus P, Maurand R, Watanabe K, Taniguchi T, Richter K, Liu M-H, Schönenberger C (2017) Giant Valley-Isospin Conductance Oscillations in Ballistic Graphene Nano Lett 17:5389Google Scholar
  51. 51.
    Georgi A, Nemes-Incze P, Carrillo-Bastos R, Faria D, Viola Kusminskiy S, Zhai D, Schneider M, Subramaniam D, Mashoff T, Michael Freitag N, Liebmann M, Pratzer M, Wirtz L, Woods CR, Vladislavovich Gorbachev R, Cao Y, Novoselov KS, Sandler N, Morgenstern M (2017) Tuning the Pseudospin Polarization of Graphene by a Pseudomagnetic Field Nano Lett 17:2240Google Scholar
  52. 52.
    Pereira VM, Castro Neto AH (2009) Strain Engineering of Graphene’s Electronic Structure Phys Rev Lett 103:046801Google Scholar
  53. 53.
    Leenaerts O, Partoens B, Peeters FM (2008) Graphene: A perfect nanoballoon Appl Phys Lett 93:193107Google Scholar
  54. 54.
    Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK (2012) Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes Science 335:442Google Scholar
  55. 55.
    Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Impermeable Atomic Membranes from Graphene Sheets Nano Lett 8:2458Google Scholar
  56. 56.
    Khestanova E, Guinea F, Fumagalli L, Geim AK, Grigorieva IV (2016) Nat Commun 7:12587CrossRefADSGoogle Scholar
  57. 57.
    Yue K, Gao W, Huang R, Liechti KM (2012) Universal shape and pressure inside bubbles appearing in van der Waals heterostructures J Appl Phys 112:083512Google Scholar
  58. 58.
    Milovanovic SP, Tadić MŽ, Peeters FM (2017) Graphene membrane as a pressure gauge Appl Phys Lett 111:043101Google Scholar
  59. 59.
    Huang M, Pascal TA, Kim H, Goddard WA, Greer JR (2011) Electronic–Mechanical Coupling in Graphene from in situ Nanoindentation Experiments and Multiscale Atomistic Simulations Nano Lett 11:1241Google Scholar
  60. 60.
    Zhu S-E, Krishna Ghatkesar M, Zhang C, Janssen GCAM (2013) Graphene based piezoresistive pressure sensor Appl Phys Lett 102:161904Google Scholar
  61. 61.
    Lee Y, Bae S, Jang H, Jang S, Zhu S-E, Sim SH, Song YI, Hong BH, Ahn J-H (2010) Wafer-Scale Synthesis and Transfer of Graphene Films Nano Lett 10:490Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of AntwerpAntwerpBelgium

Personalised recommendations