Advertisement

Formation of a Periodic Structure in a Chalcogenide Film Substrate by Silver Ion Implantation

  • T. S. Kavetskyy
  • K. V. Zubrytska
  • A. V. Stronski
  • L. I. Pan’kiv
  • P. Petkov
  • V. I. Nuzhdin
  • V. F. Valeev
  • A. M. Rogov
  • Y. N. Osin
  • A. S. Morozova
  • A. L. Stepanov
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

Recent results on the fabrication of chalcogenide photonic crystals by silver ion implantation through a nickel grid mask using (GeSe5)80B20 chalcogenide films with a thickness of ~500 nm are reported for the first time. The periodical structures obtained are characterized by a grating period ~25 μm and a step height of ~170–200 nm that may find practical use for micro/nanoelectronics.

Keywords

Ion implantation Chalcogenide glass Thin film Photonic crystal 

Notes

Acknowledgments

T.S. Kavetskyy and K.V. Zubrytska acknowledge the Ministry of Education and Science of Ukraine (projects Nos. 0116U004737, 0117U007142 (for Young Scientists) and 0117U007143). A.L. Stepanov thanks for the partial financial support from the Russian Foundation for Basic Research (project No. 17-08-00780).

References

  1. 1.
    Saito K, Utsugi Y, Yoshikawa A (1988) X-ray lithography with a Ag–Se/Ge–Se inorganic resist using synchrotron radiation. J Appl Phys 63:565Google Scholar
  2. 2.
    Stronskiin AV, Harman GG, Mach P (eds) (1998) Microelectronic interconnections and assembly. Springer, Dordrecht, p 263CrossRefGoogle Scholar
  3. 3.
    Suzuki T, Hosono H (2002) Ion-beam doping of silver in amorphous As2S3 thin films. J Appl Phys 92:1821Google Scholar
  4. 4.
    Stronski AV et al (2000) Raman spectra of Ag- and Cu-photo-doped As40S60−xSex films. J Non-Cryst Solids 270:129Google Scholar
  5. 5.
    Stronski A et al (2017) Direct magnetic relief recording using As40S60: Mn–Se nanocomposite multilayer structures. Nanoscale Res Lett 12:286Google Scholar
  6. 6.
    Stronski A et al (2015) Effect of doping by transitional elements on properties of chalcogenide glasses. Ceram Int 41:7543Google Scholar
  7. 7.
    Paiuk AP et al (2011) Peculiarities of As–S glass structure doped with ytterbium. Proc SPIE 8306:830617Google Scholar
  8. 8.
    Kavetskyy TS et al (2013) The formation of periodic diffractive plasmonic nanostructures with implanted copper nanoparticles by local ion etching of silica glass. Tech Phys Lett 39:591Google Scholar
  9. 9.
    Galyautdinov MF et al (2016) Formation of a periodic diffractive structure based on poly(methyl methacrylate) with ion-implanted silver nanoparticles. Tech Phys Lett 42:182Google Scholar
  10. 10.
    Stepanov AL et al (2017) A diffraction grating created in diamond substrate by boron ion implantation. Tech Phys Lett 43:104Google Scholar
  11. 11.
    Mamichev DA et al (2012) Optical sensors based on surface plasmon resonance for high-sensitive biochemical analysis. Mol Med 6:3Google Scholar
  12. 12.
    Petkov P, Parvanov S, Petkova T (2006) Electron transport in amorphous (GeSe5)1−x Bx films. J Optoelectron Adv Mater 8:785Google Scholar
  13. 13.
    Zeng J et al (2017) Fabrication of submicron chalcogenide glass photonic crystal by resist-free nanoimprint lithography. Appl Phys A Mater Sci Process 123:579Google Scholar
  14. 14.
    Pan WJ et al (2007) Fine embossing of chalcogenide glasses: first time submicron definition of surface embossed features. J Non-Cryst Solids 353:1302Google Scholar
  15. 15.
    Jain H, Vlcek M (2008) Glasses for lithography. J Non-Cryst Solids 354:1401Google Scholar
  16. 16.
    Kavetskyy TS et al (2014) Structural defects and positronium formation in 40 keV B+-implanted polymethylmethacrylate. J Phys Chem B 118:4194Google Scholar
  17. 17.
    Kavetskyy T et al (2016) Carbonization in boron-ion-implanted polymethylmethacrylate as revealed from Raman spectroscopy and electrical measurements. Spectrosc Lett 49:5Google Scholar
  18. 18.
    Kavetskyy T et al (2017) High-dose boron and silver ion implantation into PMMA probed by slow positrons: effects of carbonization and formation of metal nanoparticles. J Phys Conf Ser 791:012028Google Scholar
  19. 19.
    Trzcinski M, Kavetskyy T, Telbiz G, Stepanov AL (2017) Optical characterization of nanocomposite polymer formed by ion implantation of boron. J Mater Sci Mater Electron 28:7115Google Scholar
  20. 20.
    Kavetskyy TS, Stepanov AL (2016) In: Monteiro WA (ed) Radiation effects in materials. InTech, Rijeka, p 287Google Scholar
  21. 21.
    Stepanov AL (2004) Optical properties of metal nanoparticles synthesized in a polymer by ion implantation: a review. Tech Phys 49:143Google Scholar
  22. 22.
    Stepanov AL (2010) Synthesis of silver nanoparticles in dielectric matrix by ion implantation: a review. Rev Adv Mater Sci 26:1Google Scholar
  23. 23.
    Stepanov AL (2011) Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: a review. Rev Adv Mater Sci 27:115Google Scholar
  24. 24.
    Stepanov AL et al (2013) Catalytic and biological sensitivity of TiO2 and SiO2 matrices with silver nanoparticles created by ion implantation: a review. Rev Adv Mater Sci 34:107Google Scholar
  25. 25.
    Stepanov AL et al (2013) New way for synthesis of porous silicon using ion implantation. Adv Mater – Rapid Commun 7:692Google Scholar
  26. 26.
    Kavetskyy TS, Stepanov AL (2015) In: Petkov P, Tsiulyanu D, Kulisch W, Popov C (eds) Nanoscience advances in CBRN agents detection, information and energy security. Springer, Dordrecht, p 35Google Scholar
  27. 27.
    Stepanov AL et al (2017) Synthesis of porous germanium with silver nanoparticles by ion implantation. Nanotechnol Russ 12:508Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • T. S. Kavetskyy
    • 1
    • 2
  • K. V. Zubrytska
    • 1
  • A. V. Stronski
    • 3
  • L. I. Pan’kiv
    • 1
  • P. Petkov
    • 4
  • V. I. Nuzhdin
    • 5
  • V. F. Valeev
    • 5
  • A. M. Rogov
    • 6
  • Y. N. Osin
    • 6
  • A. S. Morozova
    • 5
    • 6
  • A. L. Stepanov
    • 5
    • 6
  1. 1.Drohobych Ivan Franko State Pedagogical UniversityDrohobychUkraine
  2. 2.The John Paul II Catholic University of LublinLublinPoland
  3. 3.V.E. Lashkarev Institute of Semiconductor PhysicsNational Academy of Sciences of UkraineKyivUkraine
  4. 4.Department of PhysicsUniversity of Chemical Technology and MetallurgySofiaBulgaria
  5. 5.Kazan Physical-Technical Institute of RASKazanRussian Federation
  6. 6.Kazan Federal UniversityKazanRussian Federation

Personalised recommendations