Surface Plasmon Resonance Band of Ion-Synthesized Ag Nanoparticles in High Dose Ag:PMMA Nanocomposite Films

  • T. S. Kavetskyy
  • M. M. Kravtsiv
  • G. M. Telbiz
  • V. I. Nuzhdin
  • V. F. Valeev
  • A. L. Stepanov
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


Characterization of nanocomposites prepared by Ag ion implantation into polymethylmethacrylate (PMMA) at different doses (2.5 × 1016, 1.0 × 1017, and 1.5 × 1017 Ag+/cm2) with a constant energy of 30 keV and a current density of 1 μA/cm2 in order to prepare Ag nanoparticles (NPs) was performed by UV-Vis spectroscopy. For the first time an absorption band at a wavelength of 355 nm for the highest dose sample was observed experimentally. Changes of size and filling factor of Ag NPs in the near-surface region of ion-implanted polymers are suggested to explain this result. However, further verification is needed with more informative technique such as, for example, slow positron beam spectroscopy to probe near-surface nanometer size depth profiles.


Polymers Ion implantation Nanocomposite films Surface plasmon resonance Metal nanoparticles Optical spectroscopy 



T.S. Kavetskyy and M.M. Kravtsiv acknowledge the Ministry of Education and Science of Ukraine (projects Nos. 0116U004737, 0117U007142 (for Young Scientists) and 0117U007143).


  1. 1.
    Stepanov AL (2004) Optical properties of metal nanoparticles synthesized in a polymer by ion implantation: a review. Tech Phys 49:143Google Scholar
  2. 2.
    Galyautdinov MF et al (2016) Formation of a periodic diffractive structure based on poly(methyl methacrylate) with ion-implanted silver nanoparticles. Tech Phys Lett 42:182Google Scholar
  3. 3.
    Stepanov AL et al (2000) Formation of metal-polymer composites by ion implantation. Phil Mag B 80:23Google Scholar
  4. 4.
    Kavetskyy T et al (2014) Structural defects and positronium formation in 40 keV B+ -implanted polymethylmethacrylate. J Phys Chem B 118:4194Google Scholar
  5. 5.
    Stepanov AL et al (2015) Synthesis of porous silicon by ion implantation. Rev Adv Mater Sci 40:155Google Scholar
  6. 6.
    Stepanov AL (2010) Synthesis of silver nanoparticles in dielectric matrix by ion implantation: a review. Rev Adv Mater Sci 26:1Google Scholar
  7. 7.
    Boldyryeva H et al (2005) High-fluence implantation of negative metal ions into polymers for surface modification and nanoparticle formation. Surf Coat Technol 196:373Google Scholar
  8. 8.
    Kavetskyy TS, Stepanov AL (2016) In: Monteiro WA (ed) Radiation effects in materials. InTech, Rijeka, p 287Google Scholar
  9. 9.
    Panzarasa G et al (2016) Positron annihilation spectroscopy: a new frontier for understanding nanoparticle-loaded polymer brushes. Nanotechnology 27:02LT03Google Scholar
  10. 10.
    Panzarasa G et al (2017) Probing the impact of the initiator layer on grafted-from polymer brushes: a positron annihilation spectroscopy study. Macromolecules 50:5574Google Scholar
  11. 11.
    Kavetskyy T et al (2017) High-dose boron and silver ion implantation into PMMA probed by slow positrons: effects of carbonization and formation of metal nanoparticles. J Phys Conf Ser 791:012028Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • T. S. Kavetskyy
    • 1
    • 2
  • M. M. Kravtsiv
    • 1
  • G. M. Telbiz
    • 3
  • V. I. Nuzhdin
    • 4
  • V. F. Valeev
    • 4
  • A. L. Stepanov
    • 4
    • 5
    • 6
  1. 1.Drohobych Ivan Franko State Pedagogical UniversityDrohobychUkraine
  2. 2.The John Paul II Catholic University of LublinLublinPoland
  3. 3.L.V. Pisarzhevsky Institute of Physical Chemistry National Academy of Sciences of UkraineKievUkraine
  4. 4.Kazan Physical-Technical Institute of RASKazanRussian Federation
  5. 5.Kazan Federal UniversityKazanRussian Federation
  6. 6.Kazan National Research Technological UniversityKazanRussian Federation

Personalised recommendations