Preparation of Nanoporous Hybrid Materials with Bridged Tetra Sulfide Functional Groups and Determination of Their Sensing Characteristics Towards Relative Humidity

  • M. Abdallah
  • N. Velikova
  • Y. Ivanova
  • Ahmed S. Afify
  • M. Ataalla
  • M. Hassan
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


Nano porous hybrid materials were synthesized by co-condensation of organically bridged tetra sulfide bis [3-(triethoxysilyl) propyl] tetra sulfide (BTPTS) and tetra ethoxylsilane (TEOS) in the presence of the non-ionic surfactant triblock copolymer poly(ethylene glycol)-block-poly (propylene glycol)-block-poly (ethylene glycol) (EO20PO70EO20) in acidic media as revealed by the measurement of nitrogen adsorption. The structure and chemical state of the materials were characterized by chemical analysis, Fourier–transform infrared spectroscopy (FTIR), 29Si MAS NMR, and thermo-gravimetric analysis (DTA/TG), revealing the integrity of organic groups inside the framework. The synthesized powders were prepared as sensors using the screen-printing technique and then evaluated on view of their sensing characteristics in the range from 0.0% to 96% relative humidity (RH) at room temperature. Sensors with a higher content of BTPTS show a better response towards RH.


Hybrid materials Nanoporous materials Porosity Relative humidity Screen-printing Sensors 



The authors gratefully acknowledge Professor Jean Marc Tulliani from department of applied science and technology (DISAT), Politecnico di Torino, Turin, Italy, for working in his laboratory facilities for gas sensors testing and useful discussions.


  1. 1.
    Kresge C, Leonowicz M, Roth W, Vartuli J, Beck J (1992) Nature 359:710ADSCrossRefGoogle Scholar
  2. 2.
    Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) Bull Chem Soc Jpn 63:988CrossRefGoogle Scholar
  3. 3.
    Stein A (2003) Adv Mater 15:763CrossRefGoogle Scholar
  4. 4.
    Kickelbick G (2004) Angew Chem Int Ed 43:3102CrossRefGoogle Scholar
  5. 5.
    Hatton B, Landskron K, Hhitnall W, Perovic D, Ozin G (2005) Acc Chem Res 38:305CrossRefGoogle Scholar
  6. 6.
    Huncks W, Ozin G (2005) J Mater Chem 15:3716CrossRefGoogle Scholar
  7. 7.
    Sayari A, Hamoudi S (2001) Chem Mater 13:3151CrossRefGoogle Scholar
  8. 8.
    Schüth F, Sing KSW, Weitkamp J (2002) Handbook of porous solids. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  9. 9.
    Davis ME (2002) Nature 417:813ADSCrossRefGoogle Scholar
  10. 10.
    Abdallah M, Velikova N, Ivanova Y, Dimitriev Y (2013) J Chem Technol Metall 48:571Google Scholar
  11. 11.
    Patissier B (1999) Sens Actuator Chem B 59:23CrossRefGoogle Scholar
  12. 12.
    Laville C, Deletage JY, Pellet C (2001) Sens Actuator Chem B 76:304CrossRefGoogle Scholar
  13. 13.
    Kanan SM, El-Kadri OM, Abu-Yousef IA, Kanan MC (2009) Sensors 9:8158CrossRefGoogle Scholar
  14. 14.
    Seiyama T, Yamazoe N, Arai H (1983) Sensors Actuators 4:85CrossRefGoogle Scholar
  15. 15.
    Tulliani J-M, Bonville P (2005) Ceram Int 31:507CrossRefGoogle Scholar
  16. 16.
    Liu D, Lei J, Guo L, Du X, Zeng K (2009) Microporous Mesoporous Mater 117:67CrossRefGoogle Scholar
  17. 17.
    Llusar M, Monros G, Roux C, Pozzo J, Sanchez C (2003) J Mater Chem 13:2505CrossRefGoogle Scholar
  18. 18.
    Sartori G, Bigi F, Maggi R, Sartorio R, Macquarrie D, Lenarda M, Storaro L, Coluccia S, Martra G (2004) J Catal 222:410CrossRefGoogle Scholar
  19. 19.
    Wahab M, Kim I, Ha C (2004) Microporous Mesoporous Mater 69:19CrossRefGoogle Scholar
  20. 20.
    Johari K, Saman N, Mat H (2014) J Mater Eng Perform 23:809CrossRefGoogle Scholar
  21. 21.
    Teng M, Wang H, Li F, Zhang B (2011) J Colloid Inter Sci 355:23ADSCrossRefGoogle Scholar
  22. 22.
    Johari K, Saman N, Mat H (2013) Can J Chem Eng 9999:1Google Scholar
  23. 23.
    Guo L, Li J, Zhang L, Li J, Li Y, Yu C, Shi J, Ruan M, Feng J (2008) J Mater Chem 18:2733CrossRefGoogle Scholar
  24. 24.
    Ross S (1972) Inorganic infrared and raman spectra. McGraw-Hill, LondonGoogle Scholar
  25. 25.
    Barczak M, Borowski P, Abrowski AD (2009) Colloid Surf A 347:114CrossRefGoogle Scholar
  26. 26.
    Kim J, Fang B, Song M, Yu J (2012) Chem Mater 24:2256CrossRefGoogle Scholar
  27. 27.
    Wang Y, Yang C, Zibrowius B, Spliethoff B, Linde M, Schüth F (2003) Chem Mater 15:5029CrossRefGoogle Scholar
  28. 28.
    Saadeh S, El-Ashgar N (2006) J Islam Univ Gaza 14:37Google Scholar
  29. 29.
    Zhang W, Zhang X, Hua Z, Harish P, Schroeder F, Hermes S, Cadenbach T, Shi J, Fischer R (2007) Chem Mater 19:2663CrossRefGoogle Scholar
  30. 30.
    Li C, Liu J, Zhang L, Yang J, Yang Q (2008) Microporous Mesoporous Mater 113:333CrossRefGoogle Scholar
  31. 31.
    Fan H, Wuc J, Fan X, Zhang D, Su Z, Yan F, Sun T (2012) Chem Eng J 355:198Google Scholar
  32. 32.
    Hao N, Han L, Yang Y, Wang H, Webley P, Zhao D (2010) Appl Surf Sci 256:5334ADSCrossRefGoogle Scholar
  33. 33.
    Fan H, Su Z, Fan X, Guo M, Wang J, Gao S, Sun T (2012) J Sol-Gel Sci Technol 64:418CrossRefGoogle Scholar
  34. 34.
    Sivak W, Pollack I, Petoud S, Zamboni W, Zhang J, Beckman E (2008) Acta Biomater 4:852CrossRefGoogle Scholar
  35. 35.
    Sing K (1982) Pure Appl Chem 54:2201CrossRefGoogle Scholar
  36. 36.
    Traversa E (1995) Sensors Actuators B Chem 23:135CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • M. Abdallah
    • 1
    • 2
  • N. Velikova
    • 2
  • Y. Ivanova
    • 2
  • Ahmed S. Afify
    • 3
  • M. Ataalla
    • 4
  • M. Hassan
    • 3
    • 5
  1. 1.Research and Development DepartmentMEPACO-MEDIFOODCairoEgypt
  2. 2.Department of Silicate TechnologyUniversity of Chemical Technology and MetallurgySofiaBulgaria
  3. 3.Department of Applied Science and Technology (DISAT)Politecnico di TorinoTorinoItaly
  4. 4.Faculty of Engineering and technologyBadr University in Cairo (BUC)Badr CityEgypt
  5. 5.Department of Natural ScienceObour Institute of Engineering and TechnologyCairoEgypt

Personalised recommendations