2D Hybrid Si-, Ti-Nanocomposites for Optoelectronic Devices Manufactured by the Sol-Gel Method

  • G. M. Telbiz
  • E. Leonenko
  • G. Gulbinas
  • P. Manoryk
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


Nanoscale hybrid SiO2 and TiO2 films manifest a set of properties beneficial for use in sensors, dye lasers, amplifiers, switching devices, solar cells, and OLEDs. With increasing minuteness of these devices, an accurate and homogeneous material structure is of primary importance. We studied factors influencing the characteristics of thin hybrid film which would help to tune the quality of mesoscale patterned surfaces and to developed a self-assemblying technology based on the sol-gel method to fabricate of high-quality hybrid nanocomposite films using network-forming oxides such as silica or titania. The results obtained are expected to promote the manufacturing of 2D mesoscale surfaces with laser dyes incorporated into host materials and to open opportunities for simpler configurations of optoelectronic and sensor device with improved performances.


Hybrid film Rhodamine 6G Sol-gel Optical spectra Luminescence 



The authors deeply thank Dr. M. Dvoynenko (Institute of Semiconductor Physics NASU, Kiev) for kindly help in fluorescence measurements and useful discussions.


  1. 1.
    Wirnsberger G et al (2001) Mesostructured materials for optical applications: from low-k dielectrics to sensors and lasers. Spectrochim Acta Part A 57:2049Google Scholar
  2. 2.
    López Arbeloa F et al (2001) Handbook of advanced electronic and photonic materials and devices, vol 7, p 209Google Scholar
  3. 3.
    Hayward R et al (2001) The current role of mesostructures in composite materials and device fabrication. Microporous Mesoporous Mater 44–45:619Google Scholar
  4. 4.
    Wu Y et al (2004) Composite mesostructures by nanoconfinement. Nat Mater 3:816Google Scholar
  5. 5.
    Yang Y et al (2004) Laser properties and photostabilities of laser dyes doped in ORMOSILs. Opt Mater 24:621Google Scholar
  6. 6.
    Kazakevičius A et al (2015) Insight into the mechanism of enhanced rhodamine 6G dimer fluorescence in mesoscopic pluronic-silica matrixes. J Phys Chem C 119:19126Google Scholar
  7. 7.
    Telbiz G et al (2010) Effect of nanoscale confinement on fluorescence of MEH-PPV/MCM-41. Phys Status Solidi A 207:2174Google Scholar
  8. 8.
    Carbonaro C et al (2009) Light assisted dimer to monomer transformation in heavily doped rhodamine 6G-porous silica hybrids. J Phys Chem B 113:5111Google Scholar
  9. 9.
    Malfatti L et al (2008) Aggregation states of rhodamine 6G in mesostructured silica films. J Phys Chem C 112:16225Google Scholar
  10. 10.
    Lewkowicz P et al (2012) Concentration-dependent fluorescence properties of rhodamine 6G in titanium dioxide and silicon dioxide nanolayers. J Phys Chem C 116:12304Google Scholar
  11. 11.
    Vogel R et al (2002) Dimer-to-monomer transformation of rhodamine 6G in aqueous PEO-PPO-PEO block copolymer solutions. Macromolecules 35:2063Google Scholar
  12. 12.
    Palomino-Merino R et al (2007) Photoluminescence of rhodamine 6G-doped amorphous TiO2 thin films grown by sol–gel. Vacuum 81:1480Google Scholar
  13. 13.
    Telbiz G et al (2015) Ability of dynamic holography in self-assembled hybrid nanostructured silica films for all-optical switching and multiplexing. Nanoscale Res Lett 10:196Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • G. M. Telbiz
    • 1
  • E. Leonenko
    • 1
  • G. Gulbinas
    • 2
  • P. Manoryk
    • 1
  1. 1.L.V. Pisarzhevsky Institute of Physical Chemistry National Academy of Sciences of UkraineKievUkraine
  2. 2.Center for Physical Sciences and TechnologyVilniusLithuania

Personalised recommendations