Advertisement

Ureasil-Based Polymer Matrices As Sensitive Layers for the Construction of Amperometric Biosensors

  • T. S. Kavetskyy
  • O. Smutok
  • M. Gonchar
  • O. Šauša
  • Y. Kukhazh
  • H. Švajdlenková
  • T. Petkova
  • V. Boev
  • V. Ilcheva
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

Ureasil and ureasil-chalcogenide glass composites of different history (fresh and aged during 1 year) were used for the immobilization of laccase and the construction of amperometric biosensors. A correlation between the microscopical free-volume of the polymer matrices as revealed by low-temperature positron annihilation lifetime spectroscopy and biosensor characteristics of the laccase-containing ureasil based biosensors is established. The observed findings could be applied for improvement of the operational parameters of the constructed biosensors, which may have potential for monitoring the level of pollution of wastewater.

Keywords

Organic-inorganic hybrid Ureasil Enzyme Amperometric biosensor 

Notes

Acknowledgments

This work was supported by the Ministry of Education and Science of Ukraine (projects Nos. 0116U004737; to TK, OS, MG and YK, and 0117U007142 (for Young Scientists; to YK), by the Slovak Grant Agency VEGA (project No. 2/0157/17; to OŠ) and Slovak Research and Development Agency (project No. APVV-16-0369; to OŠ and HŠ) and by the National Science Fund of the Bulgarian Ministry of Education (project No. FNI-DN09/12-2016; to TK, TP, VB and VI).

References

  1. 1.
    Boev V, Perez-Juste J, Pastoriza-Santos I, Silva CJR, Gomes MJM, Liz-Marzan LM (2004) Flexible ureasil hybrids with tailored optical properties through doping with metal nanoparticles. Langmuir 20:10268Google Scholar
  2. 2.
    Boev VI, Silva CIR, Hungerford G, Gomes MJM (2004) Synthesis and characterization of a sol–gel derived ureasilicate hybrid organic-inorganic matrix containing CdS colloidal particles. J Sol-Gel Sci Technol 31:131Google Scholar
  3. 3.
    Boev VI, Soloviev A, Silva CJR, Gomes MJM, Barber DJ (2007) Highly transparent sol-gel derived ureasilicate monoliths exhibiting long-term optical stability. J Sol-Gel Sci Technol 41:223Google Scholar
  4. 4.
    Kavetskyy T, Lyadov N, Valeev V, Tsmots V, Petkova T, Boev V, Petkov P, Stepanov AL (2012) New organic-inorganic hybrid ureasil-based polymer and glass-polymer composites with ion-implanted silver nanoparticles. Phys Status Solidi C 9:2444Google Scholar
  5. 5.
    Kavetskyy T, Sausa O, Kristiak J, Petkova T, Petkov P, Boev V, Lyadov N, Stepanov A (2013) New organic-inorganic hybrid ureasil-based polymer materials studied by PALS and SEM techniques. Mater Sci Forum 733:171Google Scholar
  6. 6.
    Kavetskyy T, Smutok O, Gonchar M, Demkiv O, Klepach H, Kukhazh Y, Sausa O, Petkova T, Boev V, Ilcheva V, Petkov P, Stepanov AL (2017) Laccase-containing ureasil-polymer composite as the sensing layer of an amperometric biosensor. J Appl Polym Sci 134:45278Google Scholar
  7. 7.
    Grynko D, Stronski A, Telbiz G, Lytvyn O, Paiuk O, Oleksenko P (2015) Nanocomposites based on chalcogenide glass semiconductor and metal phtalocyanine. Ceram Int 41:7605Google Scholar
  8. 8.
    Kavetskyy T, Sausa O, Cechova K, Svajdlenkova H, Matko I, Petkova T, Boev V, Ilcheva V, Smutok O, Kukhazh Y, Gonchar M (2017) Network properties of ureasil-based polymer matrixes for construction of amperometric biosensors as probed by PALS and swelling experiments. Acta Phys Pol A 132:1515Google Scholar
  9. 9.
    Kavetskyy T, Kolev K, Boev V, Petkov P, Petkova T, Stepanov AL (2011) In: Riethmaier JP, Paunovic P, Kulisch W, Popov C, Petkov P (eds) Nanotechnological basis for advanced sensors. Springer, Berlin, p 103CrossRefGoogle Scholar
  10. 10.
    Jean YC (1990) Positron annihilation spectroscopy for chemical analysis: a novel probe for microstructural analysis of polymers. Microchem J 42:72Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • T. S. Kavetskyy
    • 1
    • 2
  • O. Smutok
    • 3
  • M. Gonchar
    • 3
  • O. Šauša
    • 4
  • Y. Kukhazh
    • 1
  • H. Švajdlenková
    • 5
  • T. Petkova
    • 6
  • V. Boev
    • 6
  • V. Ilcheva
    • 6
  1. 1.Drohobych Ivan Franko State Pedagogical UniversityDrohobychUkraine
  2. 2.The John Paul II Catholic University of LublinLublinPoland
  3. 3.Institute of Cell Biology, National Academy of Sciences of UkraineLvivUkraine
  4. 4.Institute of Physics, Slovak Academy of SciencesBratislavaSlovak Republic
  5. 5.Polymer Institute, Slovak Academy of SciencesBratislavaSlovak Republic
  6. 6.Institute of Electrochemistry and Energy Systems, Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations