Advertisement

Preparation of Metallic and Semiconducting SWCNT Inks by a Simple Chromatographic Method: A Two-Parameter Study

  • Ana Santidrian
  • Nekane Lozano
  • Ana M. Benito
  • Wolfgang K. Maser
  • Alejandro Ansón-Casaos
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

Single-walled carbon nanotubes (SWCNTs) show either metallic or semiconducting character, and are potential candidates for the development of small electronic devices. However, commercial SWCNT materials consist of a mixture of many different SWCNT conformations and certain impurities. In this work, SWCNTs are dispersed in an aqueous medium, purified by centrifugation, and finally separated into metallic and semiconducting inks by a gel chromatography method. The separation is directly performed at ambient conditions, and the influence of the ink concentration and the chromatography column length are thoroughly evaluated. The most efficient separation, distinguishing between families of semiconducting SWCNT with different diameters, is achieved at the lowest concentration and with the longest column. These results provide a promising base for availability of SWCNTs with well-defined characteristics needed for the development of electronic devices.

Keywords

Carbon nanotube Purification Separation Electronic properties Concentration Gel chromatography 

Notes

Acknowledgments

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 642742.

References

  1. 1.
    Thomsen C, Reich S (2007) Raman scattering in carbon nanotubes. Light scattering in solid IX, topic. Appl Phys 108:115–232Google Scholar
  2. 2.
    Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115:4744–4822Google Scholar
  3. 3.
    Nakashima N, Fujigaya J (2007) Fundamental and applications of soluble carbon nanotubes. Chem Lett 36:692–697Google Scholar
  4. 4.
    Saeed K (2013) Carbon nanotubes-properties and applications: a review. Carbon Lett 14:131–444Google Scholar
  5. 5.
    Trung TQ, Lee NE (2017) Materials and devices for transparent stretchable electronics. Mat J Chem C 5:2202–2222Google Scholar
  6. 6.
    Zhu ZZ (2017) An overview of carbon and graphene for biosensing applications. Nano-Micro Lett 9:1–24Google Scholar
  7. 7.
    Peng-Xiang H, Chang L, Cheng HM (2008) Purification of carbon nanotubes. Carbon 46:2003–2025Google Scholar
  8. 8.
    Ansón-Casaos A, González-Domínguez JM, Lafragüeta I, Carrodeguas JA, Martínez MT (2014) Optical absorption response of chemically modifies single-walled carbon nanotubes upon ultracentrifugation in various dispersants. Carbon 66:105–118Google Scholar
  9. 9.
    Sayago I, Terrado E, Aleixandre M, Horrillo MC, Fernández MJ, Lozano J, Lafuente E, Maser WK, Benito AM, Martínez MT, Gutiérrez J, Muñoz E (2007) Novel selective sensors based on carbon nanotube films for hydrogen detection. Sens Actuator B-Chem 122:75–80Google Scholar
  10. 10.
    Sayago I, Santos H, Horrillo MC, Aleixandre M, Fernández MJ, Terrado E, Tacchini I, Aroz R, Maser WK, Benito AM, Martínez MT, Gutiérrez J, Muñoz E (2008) Carbon nanotube networks as gas sensors for NO2 detection. Talanta 77:758–764Google Scholar
  11. 11.
    Martinez MT, Tseng YC, Salvador JP, Marco MP, Ormategui N, Loinaz I, Bokor J (2010) Electronic anabolic steroid recognition with carbon nanotube field-effect transistors. ACS Nano 4:1473–1480Google Scholar
  12. 12.
    Martinez MT, Tseng YC, González M, Bokor J (2012) Streptavidin as CNTs and DNA linker for the specific electronic and optical detection of DNA hybridization. Phys J Chem C 116:22579–22586Google Scholar
  13. 13.
    Sieben JM, Ansón-Casaos A, Montilla F, Martínez MT, Morallón E (2014) Electrochemical behaviour of different redox probes on single wall carbon nanotube buckypaper-modified electrodes. Electrochim Acta 135:404–411Google Scholar
  14. 14.
    Gasnier A, González-Domínguez JM, Ansón-Casaos A, Hernández-Ferrer J, Pedano ML, Rubianes MD, Martínez MT (2014) Single-wall carbon nanotubes covalently functionalized with polylysine: synthesis, characterization and analytical applications for the development of electrochemical (bio) sensors. Electroanalysis 26:1676–1683Google Scholar
  15. 15.
    Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1:60–65Google Scholar
  16. 16.
    Liu H, Nihide D, Tanaka T, Kataura H (2011) Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat Commun 2:309Google Scholar
  17. 17.
    Khripin CY, Fagan JA, Zheng M (2013) Spontaneous partition of carbon nanotubes in polymer-modified aqueous phases. J Am Chem Soc 135:6822–6825Google Scholar
  18. 18.
    Ansón-Casaos A, González-Domínguez JM, Martínez MT (2010) Separation of single-walled carbon nanotubes from graphite by centrifugation in a surfactant or in polymer solutions. Carbon 48:2917–2934Google Scholar
  19. 19.
    Blanch AJ, Quinton JS, Shapter JG (2013) The role of sodium dodecyl sulfate concentration in the separation of carbon nanotubes using gel chromatography. Carbon 60:471–480Google Scholar
  20. 20.
    Araujo PT, Pesce PBC, Dresselhaus MS, Sato K, Saito R, Jorio A (2010) Resonance Raman spectroscopy of the radial breathing modes in carbon nanotubes. Phys E 42:1251–1261Google Scholar
  21. 21.
    Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Optical properties of single-walled carbon nanotubes. Synth Met 103:2555–2558Google Scholar
  22. 22.
    Itkis ME, Perea DE, Niyogi S, Richard SM, Hamon MA, Hu H, Zhao B, Haddon RC (2003) Purity evaluation of as-prepared single-walled carbon nanotube soot by use of solution-phase near-IR spectroscopy. Nano 3:309–314Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Ana Santidrian
    • 1
  • Nekane Lozano
    • 1
  • Ana M. Benito
    • 1
  • Wolfgang K. Maser
    • 1
  • Alejandro Ansón-Casaos
    • 1
  1. 1.Instituto de Carboquímica ICB-CSICZaragozaSpain

Personalised recommendations