Advertisement

Distributed Sensing and Control of Elastic Shells

  • Hornsen (HS) Tzou
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 247)

Abstract

Distributed sensing and control of a generic distributed parameter system (DPS) or a generic smart structronic shell system, i.e., a deep elastic shell laminated with distributed piezoelectric sensor and actuator layers, was proposed and corresponding generic theories derived. Based on the direct piezoelectric effect, the distributed sensor can be used to monitor shell oscillations; the converse effect enables the distributed actuators to manipulate structural behaviors and to suppress structural vibrations. Two generic sensor/actuator design principles, i.e., the segmentation technique and the shaping technique, were also presented.

References

  1. Balas, M.J., 1988, “Nonlinear Finite-Dimensional Control of a Class of Nonlinear Distributed Parameter Systems Using Residual Mode Filters,” Recent Development in Control of Nonlinear and Distributed Parameter Systems, ASME-DSC-Vol.10, pp.19-22, December 1988.Google Scholar
  2. Balas, M.J., 1978, “Active Control of Flexible Systems,” Journal of Optimization Theory and Applications, Vol.25, No.3, July, pp.415-436.Google Scholar
  3. Baz, A. and Poh, S., 1988, “Performance of an Active Control System with Piezoelectric Actuators,” Journal of Sound _ Vibration, Vol.126, No.8, pp.327-343.CrossRefGoogle Scholar
  4. Brichkin, L.A., Butkovskii, A.G., and Pustyl’nikou, L.M., 1973, “Application of Finite Integral Transformation to Optimal Control Problems”, Automatika Telemekhanika 7, pp.13-24. Google Scholar
  5. Butkovskii, A.G., 1962, “The Maximum Principle for Optimum Systems with Distributed Parameters”, Automation and Remote Control, Vol.22, pp.1429-1438.Google Scholar
  6. Crawley, E.F. and deLuis, J., 1987, “Use of Piezoelectric Actuators as Elements of Intelligent Structures,” AIAA Journal, Vol.25, No.10, pp.1373-1385.CrossRefGoogle Scholar
  7. Crawley, E.F. and Anderson, E.H., 1990, “Detailed Models of Piezoceramic Actuation of Beams,” Journal of Intelligent Material Systems, Vol.1.1, pp.4-25.CrossRefGoogle Scholar
  8. Cudney, H.H., Inman, D.J., & Y. Oshman, 1989, “Distributed Parameter Actuators for Structural Control,” Proceedings of 1989 American Control Conference, pp.1189-1194.Google Scholar
  9. Fanson, J.L. and Garba, J.A., 1988, “Experimental Studies of Active Members in Control of Large Space Structures,” AIAA Paper 88-2207, Proc. of AIAA/ASME/AHS 29th Structures, Structural Dynamics, and Materials Conference, pp.9-17.Google Scholar
  10. Hagood, N., Chung, W., and A. von Flotow, 1990, “Modeling of Piezoelectric Actuator Dynamics for Active Structural Control,” AIAA Paper No.90-1087, 31st Structures, Structural Dynamics and Materials Conference, Long Beach, CA, April 2-4, 1990.Google Scholar
  11. Hanagud, S. and Obal, M.W., 1988, “Identification of Dynamic Coupling Coefficients in a Structure with Piezoelectric Sensors and Actuators,” Proc. of AIAA/ASME/AHS 29th Structures, Structural Dynamics, and Materials Conference, (Paper No.88-2418), Part-3, pp.1611-1620.Google Scholar
  12. Kawai, H., 1969, “The Piezoelectricity of Poly(vinylidene Fluoride),” Jpn. J. Appl. Phys., Vol.8, pp. 975-976.CrossRefGoogle Scholar
  13. Lee, C. K. & Moon, F.C., 1988, “Modal Sensors/Actuators,” IBM Research Report, RJ 6306 (61975), June.Google Scholar
  14. Lions, J.L., 1968, “Optimal Control of Systems Governed by Partial Differential Equations”, Dunod and Gauthier-Villars, Paris.Google Scholar
  15. Meirovitch, L. and Silverberg, L.M., 1983, “Globally Optimal Control of Self-Adjoint Distributed Systems,” Optimal Applications _ Methods, Vol.4, pp.365-386.CrossRefGoogle Scholar
  16. Meirovitch, L. and Baruh, 1981, “Effect of Damping on Observation Spillover Instability, Journal of Optimization Theory and Applications, Vol.35, No.1, Sept. pp.31-44.MathSciNetCrossRefGoogle Scholar
  17. Obal, M.W., 1986, Vibration Control of Flexible Structures Using Piezoelectric Devices as Sensors and Actuators, Ph.D. Thesis, Georgia Institute of Technology.Google Scholar
  18. Plump, J.M., Hubbard, J. E., and Baily, T., 1987, “Nonlinear Control of a Distributed System: Simulation and Experimental Results,” ASME J. Dynamic Systems, Measurement, and Control, pp.133-139.CrossRefGoogle Scholar
  19. Reinhorn A.M. and Manolis, G.D., 1985, “Current state of knowledge on structural control,” Sound and Vibration Digest, Vol.17, pp.7-16.Google Scholar
  20. Robinson, A.C., 1971, “A Survey of Optimal Control of Distributed Parameter Systems”, Automatica 7, pp.371-388.Google Scholar
  21. Sakawa, Y., 1966, “Optimal Control of Certain Type of Linear Distributed-Parameter Systems”, IEEE Trans. on Automatic Control, Vol. AC-11, pp.35-41.Google Scholar
  22. Sessler, G.M., 1981, “Piezoelectricity in Polyvinylidene Fluoride,” J. Acoust. Soc. Am., 70(6), pp. 1596-1608.CrossRefGoogle Scholar
  23. Sirlin, S.W, 1987, “Vibration Isolation for Spacecraft Using the Piezoelectric Polymer PVF2,” Proc. of the 114th Meeting of the Acoustics Society of America, Nov.Google Scholar
  24. Tzafestas, S.G., 1970, “Optimal Distributed-Parameter Control Using Classical Variational Theory”, Int. J. Control 12, pp.593-608.Google Scholar
  25. Tzou, H. S., 1987, “Active Vibration Control of Flexible Structures Via Converse Piezoelectricity”, Developments in Mechanics, Vol.14-C, pp.201-206.Google Scholar
  26. Tzou, H.S., 1988a, “Dynamic analysis and passive control of viscoelastically damped nonlinear dynamic contacts,” J. Finite Elements in Analysis and Design, Vol.(4), No.3, pp.232-238.Google Scholar
  27. Tzou, H.S., 1988b, “Integrated Sensing and Adaptive Vibration Suppression of Distributed Systems,” Recent Development in Control of Nonlinear and Distributed Parameter Systems, ASME-DSC-Vol.10, pp.51-58, December.Google Scholar
  28. Tzou, H.S., 1989a, “Distributed Sensing and Feedback Controls of Distributed Parameter Systems,” High-Performance Computing, Edited by J.-L. Delhaye and E. Gelenbe, North-Holland, ELSEVIER Science Publishers B.V., Amsterdam, Netherlands, pp.95-107.Google Scholar
  29. Tzou, H.S., 1989b, “Theoretical Development of a Layered Thin Shell with Internal Distributed Controllers,” Failure Prevention and Reliability-1989, pp.17-20; 1989 ASME Technical Design Conference, Montreal, Canada, Sept.17-20.Google Scholar
  30. Tzou, H.S., 1989c, “Integrated Distributed Sensing and Active Vibration Suppression of Flexible Manipulators using Distributed Piezoelectrics,” Journal of Robotic Systems, Vol.6, No.6, pp. 745-767, December.Google Scholar
  31. Tzou, H.S., 1990, “Distributed Modal Identification and Vibration Control of Continua: Theory and Applications,” Proceedings of 1990 American Control Conference, pp. 1237-1243, San Diego, CA, May 23-25, 1990; ASME Journal of Dynamic Systems, Measurements, and Control, Vol.(113), No.(3), pp.494-499, September 1991.Google Scholar
  32. Tzou, H.S., 1992, “A New Distributed Sensor and Actuator Theory for “Intelligent” Shells,” Journal of Sound _ Vibration, Vol.(153), No.(2), pp. 335-350, March 1992.Google Scholar
  33. Tzou, H. S. & Gadre, M., 1988, “Active Vibration Suppression by Piezoelectric Polymer with Variable Feedback Gain,” AIAA Journal, Vol.26, No.8, pp.1014-1017.CrossRefGoogle Scholar
  34. Tzou, H. S. & Gadre, M., 1989, “Theoretical Analysis of a Muli-Layered Thin Shell Coupled with Piezoelectric Shell Actuators for Distributed Vibration Controls,” Journal of Sound and Vibration, Vol.132, No.3, pp.433-450, August.Google Scholar
  35. Tzou H.S. & Gadre, M., 1990, “Active Vibration Isolation and Excitation by a Piezoelectric Slab with Constant Feedback Gains,” Journal of Sound _ Vibration Vol.136, No.3, pp.477-490, February.Google Scholar
  36. Tzou, H.S. and Tseng, C.I., 1988a, “Active Vibration Control of Distributed Parameter Systems by Finite Element Method,” Computers in Engineering 1988, Vol.3, pp.599-604.Google Scholar
  37. Tzou, H.S. and Tseng, C.I., 1988b, “Development of a Thin Piezoelectric Finite Element Applied to Distributed Sensing and Active Vibration Controls,” 88-ASME/CIE-2, ASME Winter Annual Meeting, Chicago, Ill, 1988. (Invited Paper).Google Scholar
  38. Tzou, H.S. and Tseng, C.I., 1990, “Distributed Piezoelectric Sensor/Actuator Design for Dynamic Measurement/Control of Distributed Parameter Systems: A Piezoelectric Finite Element Approach,” Journal of Sound & Vibration, Vol.138, No.1, pp.17-34, April.Google Scholar
  39. Tzou, H.S., Tseng, C.I. & Wan, G.C., 1990, “Distributed Structural Dynamics Control of Flexible Manipulators, Part 2: Distributed Sensor and Active Electromechanical Actuator,” Journal of Computers and Structures, Vol.35, No.6, pp.679-687.Google Scholar
  40. Usov, V.S. and Surygin, A.I., 1984, “Variation of SAW Velocity and Damping in a Piezofilm- Semiconductor Structure under the Effect of a Constant Transverse Electric Field,” Radioelektronika, (ISSN 0021-3470), Vol.27. (Nov. 1984).Google Scholar
  41. Vidyasagar, M., 1988, “Control of Distributed Parameter System Using the Coprime Factorization Approach,” Recent Development in Control of Nonlinear and Distributed Parameter Systems, ASME-DSC-Vol.10, pp.1-10, December.Google Scholar
  42. Wang, P.K.C., 1966, “On the Feedback Control of Distributed Parameter Systems”, Int. J. on Control, Vol. 3, No. 3, pp. 255-273.CrossRefGoogle Scholar
  43. Zimmerman, D.C., Inman, D.J. and Juang, J.N., 1988, “Low Authority- Threshold Control for Large Flexible Structures,” AIAA Paper 88-2270, Proc. of AIAA/ASME/AHS 29th Structures, Structural Dynamics, and Materials Conference, pp.459-469. (4/ShlScrAct-New.BkPzSm2)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Mechanics and Control of Mechanical Structures; Interdisciplinary Research Institute, College of Aerospace EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations