(How to) Profit from Molecular Dynamics-based Ensemble Docking

  • Susanne von Grafenstein
  • Julian E. Fuchs
  • Klaus R. LiedlEmail author
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 17)


Computational techniques have provided the field of drug discovery with enormous advances over the last decades. The development of methods covering dynamical aspects in protein–ligand binding is currently leading computer-aided drug design to new levels of complexity as well as accuracy. In this book chapter we focus on molecular docking to structural ensembles generated by molecular dynamics (MD) simulations. Does the incorporation of multiple receptor conformations allow pushing the borders for molecular docking or does it just lead to an artificial increase in false positive hit rates due to a broader conformational space of the receptor? We aim to identify guidelines for the best practice of molecular dynamics simulation-based ensemble docking from recent studies in the literature. Hence, we split the computational workflow for MD-based ensemble docking into the respective steps starting from protein structure and compound database to in silico hit lists. Thereby, we focus on the identification of successful strategies for virtual screening.


Molecular dynamics simulation Ensemble docking Flexibility Computer-aided drug design Virtual screening Conformational selection 



Presented work was supported by funding of the Austrian Science Fund FWF: project “Targeting Influenza Neuraminidase” (P23051). Julian E. Fuchs is a recipient of a DOC-fellowship of the Austrian Academy of Sciences at the Institute of General, Inorganic and Theoretical Chemistry at University of Innsbruck.


  1. 1.
    Boehr DD, McElheny D, Dyson HJ, Wright PE (2006) The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313(5793):1638–1642. doi:10.1126/science.1130258Google Scholar
  2. 2.
    Fischer E (1894) Einfluss der Configuration auf die Wirkung der Enzyme. Ber Dtsch Chem Ges 27Google Scholar
  3. 3.
    Koshland DE (1958) Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci U S A 44 98–104Google Scholar
  4. 4.
    Tsai CJ, Ma BY, Nussinov R (1999) Folding and binding cascades: shifts in energy landscapes. Proc Natl Acad Sci U S A 96(18):9970–9972. doi:10.1073/pnas.96.18.9970Google Scholar
  5. 5.
    Tsai CJ, Kumar S, Ma BY, Nussinov R (1999) Folding funnels, binding funnels, and protein function. Protein Sci 8(6):1181–1190Google Scholar
  6. 6.
    Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5(11):789–796. doi:10.1038/nchembio.232Google Scholar
  7. 7.
    Durrant JD, McCammon JA (2010) Computer-aided drug-discovery techniques that account for receptor flexibility. Curr Opin Pharmacol 10(6):770–774. doi:10.1016/j.coph.2010.09.001Google Scholar
  8. 8.
    Totrov M, Abagyan R (2008) Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr Opin Struct Biol 18(2):178–184. doi:10.1016/ Scholar
  9. 9.
    Carlson HA, McCammon JA (2000) Accommodating protein flexibility in computational drug design. Mol Pharmacol 57(2):213–218Google Scholar
  10. 10.
    Carlson HA (2002) Protein flexibility is an important component of structure-based drug discovery. Curr Pharm Des 8(17):1571–1578. doi:10.2174/1381612023394232Google Scholar
  11. 11.
    Chaudhury S, Gray JJ (2008) Conformer selection and induced fit in flexible backbone protein-protein docking using computational and NMR ensembles. J Mol Biol 381(4):1068–1087. doi:10.1016/j.jmb.2008.05.042Google Scholar
  12. 12.
    Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, Kern D (2007) A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450(7171):913–U27. doi:10.1038/nature06407Google Scholar
  13. 13.
    Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Str, Funct, Bioinform 78(8):1950–1958. doi:10.1002/prot.22711Google Scholar
  14. 14.
    Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE (2009) Long-timescale molecular dynamics simulations of protein structure and function. Curr Opin Struct Biol 19(2):120–127. doi:10.1016/ Scholar
  15. 15.
    Goetz AW, Williamson MJ, Xu D, Poole D, Le Grand S, Walker RC (2012) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. generalized born. J Chem Theory Comput 8(5):1542–1555. doi:10.1021/ct200909jGoogle Scholar
  16. 16.
    Luque I, Freire E (2000) Structural stability of binding sites: Consequences for binding affinity and allosteric effects. Proteins: Str Funct Genet 41(S4):63–71. doi:10.1002/1097-0134 (2000) 41:4+<63::AID-PROT60>3.0.CO;2-6Google Scholar
  17. 17.
    Kroemer RT (2007) Structure-based drug design: docking and scoring. Curr Protein Pept Sci 8(4):312–328Google Scholar
  18. 18.
    B-Rao C, Subramanian J, Sharma SD (2009) Managing protein flexibility in docking and its applications. Drug Discov Today 14(7–8):394–400. doi:10.1016/j.drudis.2009.01.003Google Scholar
  19. 19.
    Jiang F, Kim SH (1991) Soft docking-matching of molecular—surface cubes. J Mol Biol 219(1):79–102. doi:10.1016/0022-2836(91)90859-5Google Scholar
  20. 20.
    Claussen H, Buning C, Rarey M, Lengauer T (2001) FlexE: efficient molecular docking considering protein structure variations. J Mol Biol 308(2):377–395. doi:10.1006/jmbi.2001.4551Google Scholar
  21. 21.
    Flick J, Tristram F, Wenzel W (2012) Modeling loop backbone flexibility in receptor-ligand docking simulations. J Comput Chem 33(31):2504–2515. doi:10.1002/jcc.23087Google Scholar
  22. 22.
    Cozzini P, Kellogg GE, Spyrakis F, Abraham DJ, Costantino G, Emerson A, Fanelli F, Gohlke H, Kuhn LA, Morris GM, Orozco M, Pertinhez TA, Rizzi M, Sotriffer CA (2008) Target flexibility: an emerging consideration in drug discovery and design. J Med Chem 51(20):6237–6255. doi:10.1021/jm800562dGoogle Scholar
  23. 23.
    Gamblin SJ, Skehel JJ (2010) influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem 285(37):28403–28409. doi:10.1074/jbc.R110.129809Google Scholar
  24. 24.
    Lill MA (2011) Efficient incorporation of protein flexibility and dynamics into molecular docking simulations. Biochemistry 50(28):6157–6169. doi:10.1021/bi2004558Google Scholar
  25. 25.
    Russell RJ, Haire LF, Stevens DJ, Collins PJ, Lin YP, Blackburn GM, Hay AJ, Gamblin SJ, Skehel JJ (2006) The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443(7107):45–49. doi:10.1038/nature05114Google Scholar
  26. 26.
    Cheng LS, Amaro RE, Xu D, Li WW, Arzberger PW, McCammon JA (2008) Ensemble-based virtual screening reveals potential novel antiviral compounds for avian influenza neuraminidase. J Med Chem 51(13):3878–3894. doi:10.1021/jm8001197Google Scholar
  27. 27.
    Grienke U, Schmidtke M, Kirchmair J, Pfarr K, Wutzler P, Durrwald R, Wolber G, Liedl KR, Stuppner H, Rollinger JM (2010) Antiviral Potential and Molecular Insight into Neuraminidase Inhibiting Diarylheptanoids from Alpinia katsumadai. J Med Chem 53(2):778–786. doi:10.1021/jm901440fGoogle Scholar
  28. 28.
    Vavricka CJ, Li Q, Wu Y, Qi JX, Wang MY, Liu Y, Gao F, Liu J, Feng EG, He JH, Wang JF, Liu H, Jiang HL, Gao GF (2011) Structural and functional analysis of laninamivir and its octanoate prodrug reveals group specific mechanisms for influenza NA inhibition. PloS Pathog 7(10):e1002249. doi:10.1371/journal.ppat.1002249Google Scholar
  29. 29.
    Li Q, Qi JX, Zhang W, Vavricka CJ, Shi Y, Wei JH, Feng EG, Shen JS, Chen JL, Liu D, He JH, Yan JH, Liu H, Jiang HL, Teng MK, Li XB, Gao GF (2010) The 2009 pandemic H1N1 neuraminidase N1 lacks the 150-cavity in its active site. Nat Struct Mol Biol 17(10):1266–1268. doi:10.1038/nsmb.1909Google Scholar
  30. 30.
    van der Vries E, Collins PJ, Vachieri SG, Xiong XL, Liu JF, Walker PA, Haire LF, Hay AJ, Schutten M, Osterhaus A, Martin SR, Boucher CAB, Skehel JJ, Gamblin SJ (2012) H1N1 2009 Pandemic influenza virus: Resistance of the I223R neuraminidase mutant explained by kinetic and structural analysis. PloS Pathog 8(9):e1002914. doi:10.1371/journal.ppat.1002914Google Scholar
  31. 31.
    Rudrawar S, Dyason JC, Rameix-Welti MA, Rose FJ, Kerry PS, Russell RJ, van der Werf S, Thomson RJ, Naffakh N, von Itzstein M (2010) Novel sialic acid derivatives lock open the 150-loop of an influenza A virus group-1 sialidase. Nat Comm 1 113. doi:10.1038/ncomms1114Google Scholar
  32. 32.
    Amaro RE, Swift RV, Votapka L, Li WW, Walker RC, Bush RM (2011) Mechanism of 150-cavity formation in influenza neuraminidase. Nat Comm 2388. doi:10.1038/ncomms1390Google Scholar
  33. 33.
    Wallnoefer HG, Lingott T, Gutierrez JM, Merfort I, Liedl KR (2010) Backbone flexibility controls the activity and specificity of a protein-protein interface: specificity in snake venom metalloproteases. J Am Chem Soc 132(30):10330–10337. doi:10.1021/ja909908yGoogle Scholar
  34. 34.
    Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Goetz AW, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wolf RM, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2012) AMBER12. University of California, San FranciscoGoogle Scholar
  35. 35.
    Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095. doi:10.1021/ct400341pGoogle Scholar
  36. 36.
    von Grafenstein S, Wallnoefer HG, Kirchmair J, Fuchs JE, Huber RG, Spitzer GM, Schmidtke M, Sauerbrei A, Rollinger JM, Liedl KR (2013) Interface dynamics explain assembly dependency of influenza neuraminidase catalytic activity. J Biomol Struct Dyn. Published online doi:10.1080/07391102.2013.855142Google Scholar
  37. 37.
    McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267(5612):585–590. doi:10.1038/267585a0Google Scholar
  38. 38.
    Xu M, Lill MA (2011) Significant enhancement of docking sensitivity using implicit ligand sampling. J Chem Inf Model 51(3):693–706. doi:10.1021/ci100457tGoogle Scholar
  39. 39.
    Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174Google Scholar
  40. 40.
    Fuchs JE, Huber RG, Von Grafenstein S, Wallnoefer HG, Spitzer GM, Fuchs D, Liedl KR (2012) Dynamic regulation of phenylalanine hydroxylase by simulated redox manipulation. PloS One 7(12):e53005. doi:10.1371/journal.pone.0053005Google Scholar
  41. 41.
    Lin J-H, Perryman AL, Schames JR, McCammon JA (2002) Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J Am Chem Soc 124(20):5632–5633. doi:10.1021/ja0260162Google Scholar
  42. 42.
    Seeliger D, de Groot BL (2010) Conformational transitions upon ligand binding: holo-structure prediction from apo conformations. PloS Comp Biol 6(1):e1000634. doi:10.1371/journal.pcbi.1000634Google Scholar
  43. 43.
    Nichols SE, Baron R, Ivetac A, McCammon JA (2011) Predictive power of molecular dynamics receptor structures in virtual screening. J Chem Inf Model 51(6):1439–1446. doi:10.1021/ci200117nGoogle Scholar
  44. 44.
    McGovern SL, Shoichet BK (2003) Information decay in molecular docking screens against holo, apo, and modeled conformations of enzymes. J Med Chem 46(14):2895–2907. doi:10.1021/jm0300330Google Scholar
  45. 45.
    Mackey MD, Melville JL (2009) Better than random? The chemotype enrichment problem. J Chem Inf Model 49(5):1154–1162. doi:10.1021/ci8003978Google Scholar
  46. 46.
    Bolstad ESD, Anderson AC (2009) In pursuit of virtual lead optimization: pruning ensembles of receptor structures for increased efficiency and accuracy during docking. Proteins: Str, Funct, Bioinform 75(1):62–74. doi:10.1002/prot.22214Google Scholar
  47. 47.
    Armen RS, Chen J, Brooks CL III (2009) An evaluation of explicit receptor flexibility in molecular docking using molecular dynamics and torsion angle molecular dynamics. J Chem Theory Comput 5(10):2909–2923. doi:10.1021/ct900262tGoogle Scholar
  48. 48.
    Marelius J, Ljungberg KB, Aqvist J (2001) Sensitivity of an empirical affinity scoring function to changes in receptor-ligand complex conformations. Eur J Pharm Sci 14(1):87–95. doi:10.1016/s0928-0987(01)00162-2Google Scholar
  49. 49.
    Kirchmair J, Spitzer GM, Liedl KR (2011) Consideration of water and solvation effects in virtual screening. In: Sotriffer C (ed) Virtual screening: principals, challenges, and practical guidelines, vol 82. Wiley, Weinheim, pp 263–289Google Scholar
  50. 50.
    Cole JC, Korb O, Olsson TSG, Liebeschuetz J (2011) The basis for target-based virtual screening: protein structures. In: Sotriffer C (ed) Virtual screening: principals, challenges, and practical guidelines, vol 82. Wiley, Weinheim, pp 87–114Google Scholar
  51. 51.
    Borjesson U, Hunenberger PH (2001) Explicit-solvent molecular dynamics simulation at constant pH: methodology and application to small amines. J Chem Phys 114(22):9706–9719Google Scholar
  52. 52.
    Merski M, Shoichet BK (2013) The impact of introducing a histidine into an apolar cavity site on docking and ligand recognition. J Med Chem 56(7):2874–2884. doi:10.1021/jm301823gGoogle Scholar
  53. 53.
    Kim MO, Nichols SE, Wang Y, McCammon JA (2013) Effects of histidine protonation and rotameric states on virtual screening of M-tuberculosis RmlC. J Comput-Aided Mol Des 27(3):235–246. doi:10.1007/s10822-013-9643-9Google Scholar
  54. 54.
    Labute P (2009) Protonate3D: assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins: Str, Funct, Bioinform 75(1):187–205. doi:10.1002/prot.22234Google Scholar
  55. 55.
    Halperin I, Ma BY, Wolfson H, Nussinov R (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins: Str, Funct, Genet 47(4):409–443. doi:10.1002/prot.10115Google Scholar
  56. 56.
    Sinko W, Lindert S, McCammon JA (2013) Accounting for receptor flexibility and enhanced sampling methods in computer-aided drug design. Chem Biol Drug Des 81(1):41–49. doi:10.1111/cbdd.12051Google Scholar
  57. 57.
    Osguthorpe DJ, Sherman W, Hagler AT (2012) Exploring protein flexibility: incorporating structural ensembles from crystal structures and simulation into virtual screening protocols. J Phys Chem B 116(23):6952–6959. doi:10.1021/jp3003992Google Scholar
  58. 58.
    Fulle S, Gohlke H (2010) Molecular recognition of RNA: challenges for modelling interactions and plasticity. J Mol Recognit 23(2):220–231. doi:10.1002/jmr.1000Google Scholar
  59. 59.
    Bruno A, Amori L, Costantino G (2011) Addressing the conformational flexibility of serine racemase by combining targeted molecular dynamics, conformational sampling and docking studies. Mol Inform 30(4):317–328. doi:10.1002/minf.201000162Google Scholar
  60. 60.
    Abagyan R, Totrov M, Kuznetsov D (1994) ICM—a new method for protein modeling and design—applications to docking and structure prediction from the distorted native conformation. J Comput Chem 15(5):488–506. doi:10.1002/jcc.540150503Google Scholar
  61. 61.
    Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314(1–2):141–151. doi:10.1016/s0009-2614(99)01123-9Google Scholar
  62. 62.
    Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092. doi:10.1063/1.1699114Google Scholar
  63. 63.
    Gervasio FL, Laio A, Parrinello M (2005) Flexible docking in solution using metadynamics. J Am Chem Soc 127(8):2600–2607. doi:10.1021/ja0445950Google Scholar
  64. 64.
    Zacharias M (2004) Rapid protein-ligand docking using soft modes from molecular dynamics simulations to account for protein deformability: binding of FK506 to FKBP. Proteins: Str, Funct, Bioinform 54(4):759–767. doi:10.1002/prot.10637Google Scholar
  65. 65.
    Hinsen K (1998) Analysis of domain motions by approximate normal mode calculations. Proteins: Str, Funct, Genet 33(3):417–429. doi:10.1002/(sici)1097-0134(19981115)33:3<417::aid-prot10>;2-8Google Scholar
  66. 66.
    May A, Zacharias M (2008) Protein-ligand docking accounting for receptor side chain and global flexibility in normal modes: evaluation on kinase inhibitor cross docking. J Med Chem 51(12):3499–3506. doi:10.1021/jm800071vGoogle Scholar
  67. 67.
    Leis S, Zacharias M (2011) Efficient inclusion of receptor flexibility in grid-based protein-ligand docking. J Comput Chem 32(16):3433–3439. doi:10.1002/jcc.21923Google Scholar
  68. 68.
    Cavasotto CN, Kovacs JA, Abagyan RA (2005) Representing receptor flexibility in ligand docking through relevant normal modes. J Am Chem Soc 127(26):9632–9640. doi:10.1021/ja042260cGoogle Scholar
  69. 69.
    Rueda M, Bottegoni G, Abagyan R (2009) Consistent improvement of cross-docking results using binding site ensembles generated with elastic network normal modes. J Chem Inf Model 49(3):716–725. doi:10.1021/ci8003732Google Scholar
  70. 70.
    Tran HT, Zhang S (2011) Accurate prediction of the bound form of the akt pleckstrin homology domain using normal mode analysis to explore structural flexibility. J Chem Inf Model 51(9):2352–2360. doi:10.1021/ci2001742Google Scholar
  71. 71.
    Cavasotto CN, Abagyan RA (2004) Protein flexibility in ligand docking and virtual screening to protein kinases. J Mol Biol 337(1):209–225. doi:10.1016/j.jmb.2004.01.003Google Scholar
  72. 72.
    Davis IW, Baker D (2009) ROSETTALIGAND docking with full ligand and receptor flexibility. J Mol Biol 385(2):381–392. doi:10.1016/j.jmb.2008.11.010Google Scholar
  73. 73.
    Meiler J, Baker D (2006) ROSETTALIGAND: protein-small molecule docking with full side-chain flexibility. Proteins: Str, Funct, Bioinform 65(3):538–548. doi:10.1002/prot.21086Google Scholar
  74. 74.
    Alonso H, Bliznyuk AA, Gready JE (2006) Combining docking and molecular dynamic simulations in drug design. Med Res Rev 26(5):531–568. doi:10.1002/med.20067Google Scholar
  75. 75.
    Knegtel RMA, Kuntz ID, Oshiro CM (1997) Molecular docking to ensembles of protein structures. J Mol Biol 266(2):424–440. doi:10.1006/jmbi.1996.0776Google Scholar
  76. 76.
    Polgar T, Keseru GM (2006) Ensemble docking into flexible active sites. Critical evaluation of flexE against JNK-3 and beta-secretase. J Chem Inf Model 46(4):1795–1805. doi:10.1021/ci050412xGoogle Scholar
  77. 77.
    Osterberg F, Morris GM, Sanner MF, Olson AJ, Goodsell DS (2002) Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins: Str, Funct, Genet 46(1):34–40. doi:10.1002/prot.10028Google Scholar
  78. 78.
    Broughton HB (2000) A method for including protein flexibility in protein-ligand docking: improving tools for database mining and virtual screening. J Mol Graphics Modell 18(3):247–+. doi:10.1016/s1093-3263(00)00036-xGoogle Scholar
  79. 79.
    Cosconati S, Marinelli L, Di Leva FS, La Pietra V, De Simone A, Mancini F, Andrisano V, Novellino E, Goodsell DS, Olson AJ (2012) Protein flexibility in virtual screening: the BACE-1 case study. J Chem Inf Model 52(10):2697–2704. doi:10.1021/ci300390hGoogle Scholar
  80. 80.
    Lin JH, Perryman AL, Schames JR, McCammon JA (2003) The relaxed complex method: accommodating receptor flexibility for drug design with an improved scoring scheme. Biopolymers 68(1):47–62. doi:10.1002/bip.10218Google Scholar
  81. 81.
    Schames JR, Henchman RH, Siegel JS, Sotriffer CA, Ni HH, McCammon JA (2004) Discovery of a novel binding trench in HIV integrase. J Med Chem 47(8):1879–1881. doi:10.1021/jm0341913Google Scholar
  82. 82.
    Perryman AL, Lin J-H, McCammon JA (2006) Optimization and computational evaluation of a series of potential active site inhibitors of the V82F/I84V drug-resistant mutant of HIV-1 protease: an application of the relaxed complex method of structure-based drug design. Chem Biol Drug Des 67(5):336–345. doi:10.1111/j.1747-0285.2006.00382.xGoogle Scholar
  83. 83.
    Trott O, Olson AJ (2010) Software news and update autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. doi:10.1002/jcc.21334Google Scholar
  84. 84.
    Amaro RE, Baron R, McCammon JA (2008) An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. J Comput-Aided Mol Des 22(9):693–705. doi:10.1007/s10822-007-9159-2Google Scholar
  85. 85.
    Sivanesan D, Rajnarayanan RV, Doherty J, Pattabiraman N (2005) In-silico screening using flexible ligand binding pockets: a molecular dynamics-based approach. J Comput-Aided Mol Des 19(4):213–228. doi:10.1007/s10822-005-4788-9Google Scholar
  86. 86.
    Paulsen JL, Anderson AC (2009) Scoring ensembles of docked protein: ligand interactions for virtual lead optimization. J Chem Inf Model 49(12):2813–2819. doi:10.1021/ci9003078Google Scholar
  87. 87.
    Korb O, Olsson TSG, Bowden SJ, Hall RJ, Verdonk ML, Liebeschuetz JW, Cole JC (2012) Potential and limitations of ensemble docking. J Chem Inf Model 52(5):1262–1274. doi:10.1021/ci2005934Google Scholar
  88. 88.
    Nichols SE, Swift RV, Amaro RE (2012) Rational prediction with molecular dynamics for hit identification. Curr Top Med Chem 12(18):2002–2012Google Scholar
  89. 89.
    Shao JY, Tanner SW, Thompson N, Cheatham TE (2007) Clustering molecular dynamics trajectories: 1. characterizing the performance of different clustering algorithms. J Chem Theory Comput 3(6):2312–2334. doi:10.1021/ct700119mGoogle Scholar
  90. 90.
    Daura X, van Gunsteren WF, Mark AE (1999) Folding-unfolding thermodynamics of a beta-heptapeptide from equilibrium simulations. Proteins: Str, Funct, Genet 34 (3):269–280. doi:10.1002/(sici)1097-0134(19990215)34:3<269::aid-prot1>;2-3Google Scholar
  91. 91.
    Durrant JD, Hall L, Swift RV, Landon M, Schnaufer A, Amaro RE (2010) Novel naphthalene-based inhibitors of trypanosoma brucei RNA editing ligase 1. PloS Neglect Trop D 4(8):e803 doi:10.1371/journal.pntd.0000803Google Scholar
  92. 92.
    Damm-Ganamet KL, Smith RD, Dunbar JB, Stuckey JA, Carlson HA (2013) CSAR benchmark exercise 2011–2012: evaluation of results from docking and relative ranking of blinded congeneric series. J Chem Inf Model. doi:10.1021/ci400025fGoogle Scholar
  93. 93.
    Ben Nasr N, Guillemain H, Lagarde N, Zagury J-F, Montes M (2013) Multiple structures for virtual ligand screening: defining binding site properties-based criteria to optimize the selection of the query. J Chem Inf Model 53(2):293–311. doi:10.1021/ci3004557Google Scholar
  94. 94.
    Sotriffer CA, Dramburg I (2005) “In situ cross-docking” to simultaneously address multiple targets. J Med Chem 48(9):3122–3125. doi:10.1021/jm050075jGoogle Scholar
  95. 95.
    Huang S-Y, Zou X (2007) Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking. Proteins: Str, Funct, Bioinform 66(2):399–421. doi:10.1002/prot.21214Google Scholar
  96. 96.
    Bottegoni G, Kufareva I, Totrov M, Abagyan R (2009) Four-dimensional docking: a fast and accurate account of discrete receptor flexibility in ligand docking. J Med Chem 52(2):397–406. doi:10.1021/jm8009958Google Scholar
  97. 97.
    Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161(2):269–288. doi:10.1016/0022-2836(82)90153-xGoogle Scholar
  98. 98.
    Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Rev Drug Discov 3(11):935–949. doi:10.1038/nrd1549Google Scholar
  99. 99.
    Jorgensen WL (2004) The many roles of computation in drug discovery. Science 303(5665):1813–1818. doi:10.1126/science.1096361Google Scholar
  100. 100.
    Rognan D (2011) Docking methods for virtual screening: principles and recent advances. In: Sotriffer C (ed) Virtual screening: principals, challenges, and practical guidelines, vol 82. Wiley, Weinheim, pp 153–176Google Scholar
  101. 101.
    Henzler AM, Rarey M (2011) Protein flexibility in structure-based virtual screening: from models to algorithms. In: Sotriffer C (ed) Virtual screening: principals, challenges, and practical guidelines, vol 82. Wiley, Weinheim, pp 223–244Google Scholar
  102. 102.
    Carlson HA, Dunbar JB Jr (2011) A call to arms: what you can do for computational drug discovery. J Chem Inf Model 51(9):2025–2026. doi:10.1021/ci200398gGoogle Scholar
  103. 103.
    Warren GL, Andrews CW, Capelli A-M, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49(20):5912–5931. doi:10.1021/jm050362nGoogle Scholar
  104. 104.
    Perola E, Charifson PS (2004) Conformational analysis of drug-like molecules bound to proteins: an extensive study of ligand reorganization upon binding. J Med Chem 47(10):2499–2510. doi:10.1021/jm030563wGoogle Scholar
  105. 105.
    Gohlke H, Hendlich M, Klebe G (2000) Predicting binding modes, binding affinities and ‘hot spots’ for protein-ligand complexes using a knowledge-based scoring function. Perspec Drug Discov Des 20(1):115–144. doi:10.1023/a:1008781006867Google Scholar
  106. 106.
    Velec HFG, Gohlke H, Klebe G (2005) DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. J Med Chem 48(20):6296–6303. doi:10.1021/jm050436vGoogle Scholar
  107. 107.
    Kuhn B, Fuchs JE, Reutlinger M, Stahl M, Taylor NR (2011) Rationalizing tight ligand binding through cooperative interaction networks. J Chem Inf Model 51(12):3180–3198. doi:10.1021/ci200319eGoogle Scholar
  108. 108.
    Repasky MP, Murphy RB, Banks JL, Greenwood JR, Tubert-Brohman I, Bhat S, Friesner RA (2012) Docking performance of the glide program as evaluated on the Astex and DUD datasets: a complete set of glide SP results and selected results for a new scoring function integrating WaterMap and glide. J Comput-Aided Mol Des 26(6):787–799. doi:10.1007/s10822-012-9575-9Google Scholar
  109. 109.
    Abel R, Young T, Farid R, Berne BJ, Friesner RA (2008) Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. J Am Chem Soc 130(9):2817–2831. doi:10.1021/ja0771033Google Scholar
  110. 110.
    Cummings MD, Arnoult É, Buyck C, Tresadern G, Vos AM, Wegner JK (2011) Preparing and filtering compound databases for virtual and experimental screening. In: Sotriffer C (ed) Virtual screening: principals, challenges, and practical guidelines, vol 82. Wiley, Weinheim, pp 35–59Google Scholar
  111. 111.
    Mason JS, Bortolato A, Congreve M, Marshall FH (2012) New insights from structural biology into the druggability of G protein-coupled receptors. Trends Pharmacol Sci 33(5):249–260. doi:10.1016/ Scholar
  112. 112.
    Smith RD, Dunbar JB Jr, Ung PM-U, Esposito EX, Yang C-Y, Wang S, Carlson HA (2011) CSAR benchmark exercise of 2010: combined evaluation across all submitted scoring functions. J Chem Inf Model 51(9):2115–2131. doi:10.1021/ci200269qGoogle Scholar
  113. 113.
    Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) Empirical scoring functions: 1. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput-Aided Mol Des 11(5):425–445. doi:10.1023/a:1007996124545Google Scholar
  114. 114.
    Bottegoni G, Rocchia W, Rueda M, Abagyan R, Cavalli A (2011) Systematic exploitation of multiple receptor conformations for virtual ligand screening. PloS One 6(5):e18845. doi:10.1371/journal.pone.0018845Google Scholar
  115. 115.
    Xu M, Lill MA (2012) Utilizing experimental data for reducing ensemble size in flexible-protein docking. J Chem Inf Model 52(1):187–198. doi:10.1021/ci200428tGoogle Scholar
  116. 116.
    Wei BQ, Weaver LH, Ferrari AM, Matthews BW, Shoichet BK (2004) Testing a flexible-receptor docking algorithm in a model binding site. J Mol Biol 337(5):1161–1182. doi:10.1016/j.jmb.2004.02.015Google Scholar
  117. 117.
    Eriksson AE, Baase WA, Zhang XJ, Heinz DW, Blaber M, Baldwin EP, Matthews BW (1992) Response of a protein-structure to cavity-creating mutations and its relation to the hydrophobic effect. Science 255(5041):178–183. doi:10.1126/science.1553543Google Scholar
  118. 118.
    Barril X, Morley SD (2005) Unveiling the full potential of flexible receptor docking using multiple crystallographic structures. J Med Chem 48(13):4432–4443. doi:10.1021/jm048972vGoogle Scholar
  119. 119.
    Minh DDL (2012) Implicit ligand theory: rigorous binding free energies and thermodynamic expectations from molecular docking. J Chem Phys 137(10). doi:10.1063/1.4751284Google Scholar
  120. 120.
    Feng JA, Marshall GR (2010) SKATE: a docking program that decouples systematic sampling from scoring. J Comput Chem 31(14):2540–2554. doi:10.1002/jcc.21545Google Scholar
  121. 121.
    Korb O, McCabe P, Cole J (2011) The ensemble performance index: an improved measure for assessing ensemble pose prediction performance. J Chem Inf Model 51(11):2915–2919. doi:10.1021/ci2002796Google Scholar
  122. 122.
    Nicholls A (2008) What do we know and when do we know it?. J Comput-Aided Mol Des 22(3–4):239–255. doi:10.1007/s10822-008-9170-2Google Scholar
  123. 123.
    Peterson W, Birdsall T, Fox W (1954) The theory of signal detectability. Trans IRE Prof Group Inform Theory 4(4):171–212Google Scholar
  124. 124.
    Okimoto N, Futatsugi N, Fuji H, Suenaga A, Morimoto G, Yanai R, Ohno Y, Narumi T, Taiji M (2009) High-performance drug discovery: computational screening by combining docking and molecular dynamics simulations. PloS Comp Biol 5(10):e1000528. doi:10.1371/journal.pcbi.1000528Google Scholar
  125. 125.
    Amaro R, Cheng L, McCammon JA, Li WW, Arzberber PW (2009) Ensemble-based virtual screening reveals novel antiviral compounds for avian influenza neuraminidase. US Patent WO2009128964 22 Jan 2009Google Scholar
  126. 126.
    Proctor EA, Yin S, Tropsha A, Dokholyan NV (2012) Discrete molecular dynamics distinguishes native like binding poses from decoys in difficult targets. Biophys J 102(1):144–151. doi:10.1016/j.bpj.2011.11.4008Google Scholar
  127. 127.
    Wallnoefer H, Fox T, Liedl K (2010) Challenges for computer simulations in drug design. In: Paneth P, Dybala-Defratyka A (eds) Kinetics and dynamics, challenges and advances in computational chemistry and physics. Springer Netherlands, Dordrecht, pp 431–463Google Scholar
  128. 128.
    Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268(5214):1144–1149. doi:10.1126/science.7761829Google Scholar
  129. 129.
    Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 112(16):6127–6129. doi:10.1021/ja00172a038Google Scholar
  130. 130.
    Negri M, Recanatini M, Hartmann RW (2011) Computational investigation of the binding mode of bis(hydroxylphenyl)arenes in 17 beta-HSD1: molecular dynamics simulations, MM-PBSA free energy calculations, and molecular electrostatic potential maps. J Comput-Aided Mol Des 25(9):795–811. doi:10.1007/s10822-011-9464-7Google Scholar
  131. 131.
    Aqvist J, Medina C, Samuelsson JE (1994) New method for predicting binding-affinity in computer-aided drug design. Protein Eng 7(3):385–391. doi:10.1093/protein/7.3.385Google Scholar
  132. 132.
    Stjernschantz E, Oostenbrink C (2010) Improved ligand-protein binding affinity predictions using multiple binding modes. Biophys J 98(11):2682–2691. doi:10.1016/j.bpj.2010.02.034Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Susanne von Grafenstein
    • 1
  • Julian E. Fuchs
    • 1
  • Klaus R. Liedl
    • 1
    Email author
  1. 1.Institute of General, Inorganic and Theoretical ChemistryUniversity of InnsbruckInnsbruckAustria

Personalised recommendations